- DeepSeek R1本地化部署与联网功能实战指南:从零搭建智能对话系统
Coderabo
pythonDeepSeekR1
前言在人工智能技术快速发展的今天,如何将先进的对话模型DeepSeekR1部署到本地环境并赋予其联网能力,成为许多开发者和企业关注的重点。本文将深入讲解完整的本地化部署流程,并通过实例代码演示如何为模型添加实时网络访问功能。一、环境准备与基础架构1.1硬件需求推荐配置:NVIDIAGPU(RTX3090或更高)+32GB内存+50GB存储空间最低配置:CPU(支持AVX2指令集)+16GB内存+3
- 本地部署 DeepSeek 模型并使用 WebUI 调用
我喜欢就喜欢
技术文档策略模式
概述本文将详细介绍如何在本地部署DeepSeek模型,并通过WebUI调用该模型。我们将使用open-webui作为Web界面工具,展示如何将DeepSeek模型集成到WebUI中,并提供一个用户友好的交互界面。环境准备在开始之前,请确保你的系统满足以下要求:Python3.11或更高版本pip包管理工具DeepSeek模型的本地部署文件GPU支持(可选,用于加速模型推理)步骤1:本地部署Deep
- 本地部署DeepSeek大模型完整指南
ddv_08
深度学习人工智能
DeepSeek作为国产顶尖开源大模型,其优秀的语义理解和生成能力备受关注。本文将手把手教你如何在本地计算机部署DeepSeek模型并实现对话交互,支持CPU/GPU双模式运行。环境准备1.硬件要求最低配置:16GB内存+100GB存储空间(仅运行7B模型)推荐配置:24GB以上显存的NVIDIA显卡(如RTX3090/4090)2.软件依赖#创建Python虚拟环境condacreate-nde
- GNU编译优化级别-O -O1 -O2 -O3
hemmingway
C++Linux
最近做一个算法的GPU加速,发现实际上使用gcc的-O3(最高级编译优化)选项,可以获得很高的加速比,我的程序里达到了3倍的样子,有时效果甚至比GPU加速好。因此小小学习了下GNU的编译优化。附言一句,在进行调试的时候,最好关闭编译优化,不然程序自动优化,执行的步骤可能稍有变化。GNU编译器提供-O选项供程序优化使用:-O提供基础级别的优化-O2提供更加高级的代码优化,会占用更长的编译时间-O3提
- 【Unity 渲染插件】GPU Instancer 基于 GPU 实例化技术,旨在解决 Unity 中大量重复对象的渲染瓶颈问题,显著提升游戏性能
Unity游戏资源学习屋
Unity插件
GPUInstancer是一款专注于高性能渲染的Unity插件,基于GPU实例化技术,旨在解决Unity中大量重复对象的渲染瓶颈问题,显著提升游戏性能。通过减少CPU到GPU的数据传输和批处理开销,该插件特别适合渲染复杂的开放世界场景、自然环境、城市布局等需要大量重复物体的场景。核心功能解析实时GPU实例化GPUInstancer能够自动检测和实例化场景中的重复网格对象,将它们的渲染交给GPU实现
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
HyperAI超神经
TVM人工智能机器学习TVM编程编译器GPUCPU
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 接口自动化测试框架搭建详解
互联网杂货铺
软件测试测试用例自动化测试职场和发展postman测试工具接口测试
点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快为什么要做(自动化)接口测试?1、由于现在各个系统的复杂度不断上升,导致传统的测试方法成本上升且测试效率大幅下降,而接口测试相对于UI测试更加稳定,且相对容易实现自动化持续集成,可以减少人工回归测试的时间成本,缩短测试周期。2、接口测试可以更早的介入到项目开发中,一般只要接口定义好了,就可以写代码了。而功能测试必须要等系统提供可测的界面后
- YOLO系列之训练环境(GPU)搭建篇
w94ghz
YOLO改进系列YOLOv8改进系列YOLO深度学习人工智能python目标检测
YOLOv8专栏导航:点击此处跳转Pytorch环境配置(Windows)Anaconda安装此处下载安装即可⭐温馨提示:安装路径
- DeepSeek极端榨取硬件性能被曝光
极道Jdon
javascriptreactjs
DeepSeek的出现是否意味着前沿LLM开发不再需要大规模GPU集群?简单来说:不是的。虽然DeepSeek的V3模型通过一些非常厉害的优化技术,让GPU的使用效率变得更高了,但这并不意味着像Google、OpenAI、Meta和xAI这些公司之前花大钱搞的大规模GPU集群就没用了。AI开发者的普遍看法是,大规模GPU集群仍然是训练顶尖AI模型的关键。DeepSeek做了什么?DeepSeek的
- 【deepseek】本地部署DeepSeek R1模型:使用Ollama打造个人AI助手
大表哥汽车人
人工智能大语言模型学习笔记人工智能deepseek
一、简介DeepSeekR1是一个强大的开源语言模型,通过Ollama可以轻松实现本地部署。本文将详细介绍如何在本地部署和使用DeepSeekR1模型,并结合PageAssist插件实现更便捷的AI交互体验。二、环境准备硬件要求GPU显存要求:7B模型:8-12GB显存14B模型:12GB以上显存32B模型:建议16GB以上显存建议使用NVIDIA显卡SSD硬盘空间:建议预留50GB以上软件要求安
- CUDA编程(一):GPU计算与CUDA编程简介
AI Player
CUDA人工智能CUDANVIDIA
CUDA编程(一):GPU计算与CUDA编程简介GPU计算GPU硬件资源GPU软件资源GPU存储资源CUDA编程GPU计算NVIDIA公司发布的CUDA是建立在GPU上的一个通用并行计算平台和编程模型,CUDA编程可以利用GPU的并行计算引擎来更加高效地解决比较复杂的计算难题。GPU的并行计算最成功的一个应用就是深度学习领域。GPU通常不作为一个独立运行的计算平台,而需要与CPU协同工作,它可以看
- GPU编程与CUDA
Nice_cool.
Cuda与TensorRTc++
CUDA编程并行计算整体流程从主机端申请内存,把内存部分的内容拷贝到设备端在设备端的核函数计算从设备端拷贝到主机端,并且释放内存显存主机端:cpu设备端:gpu核函数:在gpu上运行的函数CUDA内存模型CUDA中的内存模型分为以下几个层次(硬件):•每个线程处理器(SP)都用自己的registers(寄存器)•每个SP都有自己的localmemory(局部内存),register和localme
- GPU-CUDA编程学习(一)
☞北海北☜
c++
Hello,CUDA最近在学习GUP编程,故此记录下学习进度。#include__global__voidmyfirstkernel(void){}intmain(void){myfirstkernel>>();printf("hello,CUDA!\n");return0;}不难看出CUDA代码基本上和ANSIC代码一样,只是增加了一些关键字来利用数据并行性global相当于声明函数在设备中运行
- 全面解析:HTML页面的加载全过程(六)--浏览器渲染之分层 - Layer
huazi99于老师
html前端
分层原因在生成布局树之后,渲染进程会将一些复杂的3D动画、滚动条、高z-index的元素生成图层,并生成图层树交给GPU加速渲染。页面设计复杂,并且交互效果多。如不分层,用户的一个简单交互将导致整个页面的重新渲染,效率低下。分层好处通过分层,浏览器可以将复杂的页面元素分离成不同的图层,每个图层可以独立地进行渲染和更新,从而减少重排和重绘的次数。例如,当用户滚动页面时,只有可视区域的内容会被重新绘
- Apache TVM:开源深度学习编译器栈的领跑者
计攀建Eliza
ApacheTVM:开源深度学习编译器栈的领跑者tvmOpendeeplearningcompilerstackforcpu,gpuandspecializedaccelerators项目地址:https://gitcode.com/gh_mirrors/tv/tvm项目介绍ApacheTVM是一个专为深度学习系统设计的编译器栈。它旨在弥合生产力导向的深度学习框架与性能和效率导向的硬件后端之间的差
- spring mvc 创建restapi 笔记
weixin_42277889
springmvc笔记
@RestController@RequestMapping("/spittles")publicclassSpittleController{//示例:使用@RequestBody接收JSON并自动转换为Spittle对象@PostMappingpublicSpittlesaveSpittle(@RequestBodySpittlespittle){//此时Spring已经把请求体中的JSON/
- LLM系列(0):行业大模型落地服务在全业务场景的应用与探索【大模型智能问答、NL2SQL、文档智能分析智能生成、AI智能体决策等】
汀、人工智能
LLM工业级落地实践人工智能自然语言处理promptNL2DSLNL2SQL大模型智能问答
行业大模型落地服务:在全业务场景的应用与探索1.行业大模型落地挑战及应对1.1.挑战一:有限的算力资源在政企客户场景中落地行业大模型方案,可能首先面临的一个挑战是客户的算力资源有限。算力资源作为大模型落地的前提条件,是很多客户关注的重点,也是业务团队前期与客户沟通交流的一个重点。行业大模型场景落地是否一定需要大量的GPU算力,以及需要多少的算力才能满足落地需求?GPU算力主要消耗在两个地方,一是大
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- conda创建新虚拟环境——从无到有
S.T.A.R.
深度学习tensorflowanaconda
自己租的GPU最近有点鱼的记忆,base配什么环境自己都忘了,所以自己开始学习如何创建并且配置一个新环境,当然这一切建立在andonate3安装完的前提下自己的配置:Linux系统,Xshell编译器创建环境condacreate-nyourEnvnamepython=3.6激活环境condaactivateyourEnvname就可以看到命令行的base换成了你的环境名可以开始installco
- cuda 线程调度
weiwei0319
CUDA并发编程
硬件描述从硬件上看,一块显卡的最小单元是GPU核(或者叫做StreamProcessor),所有核心平均分配在多个SM中,而多个SM共同构成整块显卡的核心。比如RTX2070有36个StreamingMultiprocessors,而每个SM有64个CUDACores,RTX2070具有36*64=2304个CUDACores。软件描述thread,block,grid,warp都是CUDA编程上
- Autogen_core 测试代码:test_base_agent.py
ZHOU_WUYI
autogen人工智能agent
目录测试代码测试代码讲解详细解释第一部分:定义`NoopAgent`类第二部分:测试函数`test_base_agent_create_notebook`完成的功能测试代码代码运行在notebook上fromautogen_coreimport(BaseAgent,MessageContext,)fromtypingimportAnyclassNoopAgent(BaseAgent):def__i
- Mooncake:面向大语言模型服务的以 KVCache 为中心的架构
步子哥
AGI通用人工智能语言模型架构人工智能
摘要Mooncake是Kimi的服务平台,Kimi是由MoonshotAI提供的领先的LLM服务。它采用以KVCache为中心的分解架构,将预填充和解码集群分离。它还利用GPU集群未充分利用的CPU、DRAM和SSD资源来实现KVCache的分解缓存。Mooncake的核心是其以KVCache为中心的调度器,它在满足延迟相关的服务水平目标(SLO)的同时,平衡了最大化整体有效吞吐量。与假设所有请求
- 判断字符串能否转json
qq_26517369
json
packagecom.jlit.msgPush.utils;importorg.apache.commons.lang.StringUtils;importorg.json.JSONArray;importorg.json.JSONException;importorg.json.JSONObject;/*importcom.alibaba.fastjson.JSON;importcom.alib
- C#高级:常用的扩展方法大全
我是苏苏
C#高级c#windowsjava
1.StringpublicstaticclassStringExtensions{//////字符串转List(中逗英逗分隔)///publicstaticListSplitCommaToList(thisstringdata){if(string.IsNullOrEmpty(data)){returnnewList();}data=data.Replace(",",",");//中文逗号转化为
- 自建stgcn数据集并训练
青年夏日科技工作者
AI编程
参考了许多博文,慢慢地也就把st-gcn跑出来了,参考的文章一会附在文章里面,实测有用。1.安装st-gcn复现STGCNCPU版(ubuntu16.04+pytorch0.4.0+openpose+caffe)_Significance的博客-CSDN博客复现旧版STGCNGPU版(win10+openpose1.5.0)_Significance的博客-CSDN博客22.准备训练数据集官方使用
- docker desktop使用ollama在GPU上运行deepseek r1大模型
yimenren
docker容器运维
一、安装docker安装WSL打开HyperV可以参考:用Docker快速安装软件_哔哩哔哩_bilibili二、拉取ollama镜像在powershell中运行如下命令,即可拉取最新版本的ollama镜像:dockerpullollama/ollama如果需要指定版本,可以用如下命令:#CPU或NvidiaGPU下载ollama0.3.0dockerpullollama/ollama:0.3.0
- cpu和gpu的区别
sdsadwe
cpucpu
cpu和gpu的区别是cpu是电脑的中央处理器,在电脑中起着控制计算机运行的作用;gpu是一个附属型的处理器,主要处理计算机中与图形计算有关的工作,并将数据更好地呈现在显示器中。组装电脑怎么搭配更合适这些点很重要http://www.adiannao.cn/duCPU,在电脑中起着控制计算机运行的作用,是电脑的中央处理器。GPU是一个附属型的处理器,主要处理计算机中与图形计算有关的工作,并将数据更
- CPU与GPU的区别
dingkm666
基础知识储备cpu与gpu
1.什么是CPU?CPU:中央处理器(英文CentralProcessingUnit)是一台计算机的运算核心和控制核心。CPU、内部存储器和输入/输出设备是电子计算机三大核心部件。其功能主要是解释计算机指令以及处理计算机软件中的数据。2.什么是GPU?GPU:英文全称GraphicProcessingUnit,中文翻译为“图形处理器”,又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作
- cpu和gpu的区别,以及cpu和gpu中核的概念以及四种架构
zhoudeng666
架构c++linuxc语言
1.什么是cpu个人理解cpu就是一个公司里面的技术骨干,但是不参与管理工作的人员,在计算机中cpu主要是用来处理一条条机器指令的,并且cpu的运算速度特别快,所以说周围还有几个秘书,就是给他提供资料或者存储资料的(寄存器),一般一个程序运行的流程就是操作系统从程序对应的pcb中将指令取出,交给cpu进行处理,cpu处理完毕以后将结果写回对应的存储单元(寄存器或者内存)。cpu的具体作用:1.指令
- Writing an efficient Vulkan renderer
Night_Aurora
Vulkan渲染vulkan
27Feb2020In2018,Iwroteanarticle“WritinganefficientVulkanrenderer”forGPUZen2book,whichwaspublishedin2019.InthisarticleItriedtoaggregateasmuchinformationaboutVulkanperformanceasIcould-insteadoftryingtof
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep