- 清华DeepSeek以手札为剑,破AI迷津雾霭,开启荣耀进阶征途
2501_91080610
pdf
清华DeepSeek:以手札为剑,破AI迷津雾霭,开启荣耀进阶征途在当下这个科技浪潮奔涌不息的时代,人工智能领域成为了无数科研人员竞逐的“战场”。在这片充满无限可能却又迷雾重重的天地中,清华DeepSeek宛如一位英勇无畏的剑客,紧握“手札”这把利剑,奋力劈开迷津雾霭,大步踏上荣耀进阶的征途。溯源:手札中的智慧传承与沉淀清华DeepSeek背后,是一群怀揣着对AI炽热梦想的清华学子与科研精英。手札
- AI应用基于DJL开发WEB应用对鞋分类进行预测和推理------AI
旧约Alatus
#AI#Spring-Boot框架springboot微服务springcloud后端mybatisstablediffusionchatgpt
packagecom.alatus.djl.app;importai.djl.MalformedModelException;importai.djl.translate.TranslateException;importcom.alatus.djl.service.InterferenceService;importcom.alatus.djl.service.TrainService;impo
- 模型上下文协议(MCP):构建 AI 与数据交互的新范式
xxgshxs
人工智能chatgptprompt文心一言llamacopilot
引言在人工智能领域,大型语言模型(LLMs)的应用正从通用问答向复杂任务执行演进,但数据孤岛、工具集成碎片化及隐私安全等问题制约了其潜力。模型上下文协议(ModelContextProtocol,MCP)作为Anthropic提出的开放标准,旨在通过标准化接口连接AI应用与异构数据源及工具,重塑AI开发范式。本文从技术架构、核心功能、应用场景等维度解析MCP的设计逻辑与实践价值。一、核心概念与设计
- 量子计算如何颠覆能源优化领域:从理论到实践
Echo_Wish
人工智能前沿技术量子计算能源
量子计算如何颠覆能源优化领域:从理论到实践大家好,我是Echo_Wish,一个热爱探索前沿技术的人工智能与Python领域的技术分享者。今天,我们将深入探讨一个激动人心的话题——量子计算在能源优化中的应用。这不仅是科技领域的全新趋势,也可能为全人类的能源利用效率带来革命性突破。从理论模型到实际应用,量子计算已经在一些能源相关领域崭露头角,例如电网优化、可再生能源分配和物流节能规划。以下,让我们一步
- 机试题——农田修复
指针从不空
#hw机试题算法c++
题目描述小明的农田受到地震的破坏,农田中的一些网点断开了联系。假设原本的农田网构成一个矩形,其中未被破坏的网点标记为1,被破坏的网点标记为0。标记为1的网点连在一起构成一个子网。现在,小明需要找到一个目标网点,并找出离它最近的其他子网。请注意,两个网点相连只能通过上下左右四个方向,不可以通过斜对角相连。两个网点的距离定义为从一个网点(假设网点名为C)到达另一个网点(假设网点名为D)需要经过相连网点
- AI人工智能 Agent:电力系统中智能体的应用
AI天才研究院
AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能Agent:电力系统中智能体的应用作者:禅与计算机程序设计艺术1.背景介绍1.1电力系统的挑战与机遇电力系统是现代社会运行的基石,其安全、可靠、高效运行对经济发展和人民生活至关重要。近年来,随着可再生能源的快速发展、电力需求的不断增长以及电力市场化的推进,电力系统面临着前所未有的挑战,同时也迎来了新的发展机遇。挑战:可再生能源的波动性和间歇性:太阳能和风能等可再生能源的输出功率受天气条
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- Python从0到100(七十六):计算机视觉-直方图和自适应直方图均衡化
是Dream呀
python计算机视觉开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- autoMate - AI实现电脑任务自动化的本地工具
小众AI
AI开源人工智能自动化运维
GitHub:https://github.com/yuruotong1/autoMate更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AIautoMate是一款由开源开发的本地自动化工具,以AI+RPA(人工智能+机器人流程自动化)为核心特色。它将大型语言模型的智能理解与RPA的流程执行能力结合,用户只需用自然语言描述任务,如“整理桌面文件”或“生成周报”,即可
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 从零开始构建大模型(LLM)应用
和老莫一起学AI
人工智能ai大模型语言模型llm自然语言处理学习
大模型(LLM)已经成为当前人工智能的重要部分。但是,在这个领域还没有固定的操作标准,开发者们往往没有明确的指导,需要不断尝试和摸索。在过去两年中,我帮助了许多公司利用LLM来开发了很多创新的应用产品。基于这些经验,我形成了一套实用的方法,并准备在这篇文章中与大家分享。这套方法将提供一些步骤,帮助需要的小伙伴在LLM应用开发的复杂环境中找到方向。从最初的构思到PoC、评估再到产品化,了解如何将创意
- 机器学习之线性代数
珠峰日记
AI理论与实践机器学习线性代数人工智能
文章目录一、引言:线性代数为何是AI的基石二、向量:AI世界的基本构建块(一)向量的定义(二)向量基础操作(三)重要概念三、矩阵:AI数据的强大容器(一)矩阵的定义(二)矩阵运算(三)矩阵特性(四)矩阵分解(五)Python示例(使用NumPy库)四、线性代数在AI中的应用(一)数据表示(二)降维:PCA(三)线性回归(四)计算机视觉(五)自然语言处理一、引言:线性代数为何是AI的基石在人工智能领
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- AI大模型零基础金融人如何一周自学大模型,从零基础到入门,看这篇就够了!
冻感糕人~
人工智能金融AI大模型LLM大模型技术大模型学习路线大模型基础
前几天参加了字节跳动在上海举办的火山引擎Force原动力大会,OpenAI也连续开了12天发布会,最近堪称科技界的春晚了。如果说2022年ChatGPT横空出世把人工智能的发展带上了一个新的台阶,那么2024年末,大模型对工作、生活的全面“侵入”让我们越来越接近库兹韦尔所描述的那个奇点时刻。作为金融民工,我们想通过这篇文章讲讲从用户的角度如何一周快速掌握大模型,以及为什么我建议每一个金融从业人员(
- SeisMoLLM: Advancing Seismic Monitoring via Cross-modal Transfer with Pre-trained Large Language
UnknownBody
LLMDailyMultimodal语言模型人工智能自然语言处理
摘要深度学习的最新进展给地震监测带来了革命性变化,但开发一个能在多个复杂任务中表现出色的基础模型仍然充满挑战,尤其是在处理信号退化或数据稀缺的情况时。本文提出SeisMoLLM,这是首个利用跨模态迁移进行地震监测的基础模型,它无需在地震数据集上进行直接预训练,就能充分发挥大规模预训练大语言模型的强大能力。通过精心设计的波形标记化处理和对预训练GPT-2模型的微调,SeisMoLLM在DiTing和
- R+VIC 模型融合实践技术应用及未来气候变化模型预测
weixin_贾
水文模型集合水文水资源防洪评价风险评估滑坡泥石流数学建模经验分享
目前,无论是工程实践或是科学研究中都存在很多著名的水文模型如SWAT/HSPF/HEC-HMS等。虽然,这些软件有各自的优点;但是,由于适用的尺度主要的是中小流域,所以在预测气候变化对水文过程影响等方面都有所不足。VIC模型是一个大尺度的半分布式水文模型,其设计之初就是为了模拟大流域的水文过程;它能够计算陆地-大气的能量通量,考虑土壤性质和土地利用的影响,自带有简化的湖泊/湿地模块,也能够将植被状
- 成功案例丨开发时间从1小时缩短到3分钟:如何利用历史数据训练AI模型,预测设计性能?
Altair澳汰尔
PhysicsAI仿真AI机器学习HyperWorks数据分析
案例简介PhysicsAI™助力HEROMOTOCORP实现设计效率提升99%印度领先的跨国摩托车和踏板车制造商HeroMotoCorpLtd.(以下简称Hero)致力于通过将人工智能(AI)和机器学习技术融入有限元分析(FEA)流程,以加速产品开发周期。在其首个AI驱动项目——摩托车把手设计优化中,Hero采用了PhysicsAI™几何深度学习解决方案,利用历史数据训练AI模型并预测设计性能。A
- 农业生产模拟和农业政策分析:WOFOST模型与PCSE模型安装、运行、数据准备;农田农作物生长模拟和产量预测等
WangYan2022
作物模型农业WOFOST模型PCSE模型农田生态系统作物模型农业生产模拟
WOFOST(WorldFoodStudies)和PCSE(PythonCropSimulationEnvironment)是两个用于农业生产模拟的模型:WOFOST是一个经过多年开发和验证的模型,被广泛用于全球的农业生产模拟和农业政策分析;采用了模块化的结构,可以对不同的农作物和环境条件进行参数化和适应;WOFOST可用于长期模拟,能够模拟整个作物生长周期,包括播种、生长、收获等各个阶段;WOF
- 数据分析与AI丨AI Fabric:数据和人工智能架构的未来
Altair澳汰尔
数据分析aiRapidMiner知识图谱人工智能
AIFabric架构是模块化、可扩展且面向未来的,是现代商业环境中企业实现卓越的关键。在当今商业环境中,数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生,新的应用场景不断涌现,前沿探索持续拓展。可遗憾的是,众多企业在利用数据和人工智能方面,脚步总是滞后。这是每个行业进行创新和获得竞争优势的冲刺阶段,但正如大多数企业时常感受到的那样,大规模实施下一代数据和AI工具说起来容易做起来难。
- Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析
ylfhpy
Manus深度学习人工智能机器学习机器翻译Manus
在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus凭借专业的财务估值建模能力,深入挖掘英伟达的潜在价值,为投资者提供了一份极具价值的分析报告。Manus在接到为英伟达进行详细财务估值建模的任务后,迅速且有条不紊地开展工作。数据收集是建模的基石,其重要性不言而喻。在收集英伟达公司
- Python学习指南:系统化路径 + 避坑建议
程之编
Python全栈通关秘籍青少年编程python开发语言人工智能机器学习
新手小白学习编程就像搭积木——需要从基础开始,逐步构建知识体系。以下是为你量身定制的Python学习路径,帮你告别杂乱,高效入门!一、学习前的关键认知明确目标:想用Python做什么?数据分析(如Excel自动化、可视化)Web开发(如搭建网站)人工智能(如机器学习)自动化办公(如处理文件、邮件)目标不同,后续学习侧重点不同(但基础通用)。避免误区:❌只看教程不写代码✅边学边动手,哪怕抄代码也要运
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 新的一年,新的感受和成长
是小天才哦
#高职生闲谈服务器
本人现在是工作快2年的打工人,我是前年7月份毕业的大专生。其实我在大学刚开始的时候因为体验过社会的毒打,所以发誓一定要好好学习,而我也的确好好学习了,在学校2年时间里,大部分时间都是在图书馆里面看书,主要为啥天天在图书馆很大原因是本专业的课程自己不是非常喜欢(我是人工智能专业,人工智能专业大专学历出来基本也是打框的无聊活)所以我就自己学习了系统运维方向,这个过程也考取了RHCE认证,也是因为这个认
- AI人才争夺战升级、算力投资加码与阿里千亿AI豪赌:重塑未来科技格局的三大核心战场
meisongqing
人工智能科技
2025年3月,全球科技领域最引人注目的动态,莫过于AI人才争夺的白热化、算力投资的规模化竞赛,以及阿里巴巴以3800亿元重注押宝AI的豪赌。这三股力量交织,不仅推动了中国科技产业的深度变革,更预示着一场全球技术话语权的重新洗牌。---一、AI人才争夺战:从“高薪挖角”到“生态争夺”全球AI产业的爆发式增长,使得顶尖人才成为最稀缺的资源。据预测,到2030年,中国AI人才缺口将达400万,而美国A
- 一学就会的深度学习基础指令及操作步骤(6)迁移学习
小圆圆666
深度学习迁移学习人工智能卷积神经网络
文章目录迁移学习模型准备数据增强模型训练模型微调和预测检查预测结果迁移学习迁移学习是将一个任务中学到的知识应用到另一个相关任务上,以提高新任务的学习效率和性能。优势:节省训练时间,提高模型性能,尤其在小数据场景下效果显著。核心是利用源域的知识来帮助目标域任务,比如在ImageNet上预训练的模型用于医疗影像分类。源域(SourceDomain):已有知识的领域(如ImageNet图像库)。目标域(
- 通义万相2.1:AI视频生成迎来“质变”,运镜、文字、物理规律全面突破
that's boy
人工智能通义万象2.1chatgptopenaiqwenAI作画AI编程
AI视频生成,从“能看”到“惊艳”的跨越在人工智能的浪潮中,AI视频生成无疑是最受瞩目的领域之一。从最初的简单动画到如今的逼真模拟,AI视频生成技术正在快速发展,不断刷新人们的认知。近日,阿里云旗下通义万相视频生成模型宣布了2.1版本的重磅升级,不仅在性能上实现了全面提升,更在运镜、文字生成、物理规律模拟等方面取得了突破性进展,让AI视频生成真正进入了“质变”的新阶段。通义万相2.1的出现,不仅是
- C++开源库大全
大王算法
C/C++开发实战365C++入门及项目实战宝典c++开源
程序员要站在巨人的肩膀上,C++拥有丰富的开源库,这里包括:标准库、Web应用框架、人工智能、数据库、图片处理、机器学习、日志、代码分析等。标准库C++StandardLibrary:是一系列类和函数的集合,使用核心语言编写,也是C++ISO自身标准的一部分。
- LangChain大模型应用开发指南-大模型Memory不止于对话
喝不喝奶茶丫
langchain人工智能大模型大模型应用AI大模型Memory大语言模型
上节课,我我为您介绍了LangChain中最基本的链式结构,以及基于这个链式结构演化出来的ReAct对话链模型。今天我将由简入繁,为大家拆解LangChain内置的多种记忆机制。本教程将详细介绍这些记忆组件的工作原理、特性以及使用方法。【一一AGI大模型学习所有资源获取处一一】①人工智能/大模型学习路线②AI产品经理资源合集③200本大模型PDF书籍④超详细海量大模型实战项目⑤LLM大模型系统学习
- llama.cpp框架下GGUF格式及量化参数全解析
Black_Rock_br
人工智能
前言:在人工智能领域,语言模型的高效部署和推理一直是研究热点。随着模型规模的不断扩大,如何在有限的硬件资源上实现快速、高效的推理,成为了一个关键问题。`llama.cpp`框架以其出色的性能和灵活性,为这一问题提供了有效的解决方案。其中,GGUF格式和模型量化参数是实现高效推理的重要技术手段。本文将对`llama.cpp`框架下的GGUF格式及量化参数进行详细解析,帮助读者更好地理解和应用这些技术
- AI 技术 引入 RTK(实时动态定位)系统,可以实现智能化管理和自动化运行
小赖同学啊
人工智能低空经济人工智能自动化运维
将AI技术引入RTK(实时动态定位)系统,可以实现智能化管理和自动化运行,从而提高系统的精度、效率和可靠性。以下是AI技术在RTK系统中的应用实例:一、AI技术在RTK系统中的应用场景1.整周模糊度快速解算问题:RTK的核心是解算载波相位的整周模糊度,传统方法耗时较长。AI解决方案:使用深度学习模型(如卷积神经网络CNN)预测整周模糊度。通过历史数据训练模型,实现快速解算。实例:某无人机公司使用A
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象