多元分类及其pytorch实现

相比起逻辑回归的二分类,多元分类使用softmax来替代了sigmoid,假如需要分k类,那么应该有k个输入值\eta1...\etak,然后输出k个概率,且概率之和为1。

顺便给出softmax的定义:\pii= e^\etai/\sum_{l=1}^{k}  e^\etal

import matplotlib.pyplot as plt
import torch
from torch import nn,optim
import torch.nn.functional as Func

# 500*2的大小
cluster = torch.ones(500, 2)
# 4,-4为期望值,2为标准差生成一堆数据
data0 = torch.normal(4 * cluster, 2)
data1 = torch.normal(-4 * cluster, 1)
data2 = torch.normal(-8 * cluster, 1)
label0 = torch.zeros(500)
label1 = torch.ones(500)
label2 = label1*2

x = torch.cat((data0, data1, data2), ).type(torch.FloatTensor)
y = torch.cat((label0, label1, label2), ).type(torch.LongTensor)

plt.scatter(x.numpy()[:, 0], x.numpy()[:, 1], c=y.numpy(), s=10, lw=0, cmap='RdYlGn')
plt.show()



class Net(nn.Module):
    def __init__(self, input_feature, num_hidden, outputs):
        super(Net,self).__init__()
        # 创建了输入特征到隐藏层的线性变换
        self.hidden = nn.Linear(input_feature,num_hidden)
        # 创建了隐藏层到输出层的线性变换
        self.out = nn.Linear(num_hidden,outputs)

    def forward(self, x):
        # 对输入数据 x 进行隐藏层的线性变换,并经过 ReLU
        x = Func.relu(self.hidden(x))
        # 表示将数据 x 通过输出层的线性变换
        x = self.out(x)
        x = Func.softmax(x,dim=1)
        return x

CUDA = torch.cuda.is_available()
if CUDA:
    # x的维度为2,输出三类
    net = Net(input_feature=2, num_hidden=20, outputs=3).cuda()
    inputs = x.cuda()
    target = y.cuda()
else:
    net = Net(input_feature=2, num_hidden=20, outputs=3)
    inputs = x
    target = y

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr=2e-2)

def draw(output):
    if CUDA:
        output = output.cpu()
    # 清空画布
    plt.cla()
    output = torch.max((output), 1)[1]
    pred_y = output.data.numpy().squeeze()
    target_y = y.numpy()
    plt.scatter(x.numpy()[:, 0], x.numpy()[:, 1], c=pred_y, s=10, lw=0, cmap='RdYlGn')
    accuracy = sum(pred_y == target_y) / 1500.0
    plt.text(1.5, -4, 'Accuracy=%s' % (accuracy), fontdict={'size': 20, 'color': 'red'})
    plt.pause(0.1)

def Train(model,criterion,optimizer,epochs):
    for epochs in range(epochs):

        output = model(inputs)
        loss = criterion(output,target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step() #权重更新
        if epochs % 40 == 0:
            draw(output)
    plt.pause(0.1)


Train(net,criterion,optimizer,1000)

你可能感兴趣的:(分类,数据挖掘,人工智能)