- 免费的GPT可在线直接使用(一键收藏)
kkai人工智能
gpt
1、LuminAI(https://kk.zlrxjh.top)LuminAI标志着一款融合了星辰大数据模型与文脉深度模型的先进知识增强型语言处理系统,旨在自然语言处理(NLP)的技术开发领域发光发热。此系统展现了卓越的语义把握与内容生成能力,轻松驾驭多样化的自然语言处理任务。VisionAI在NLP界的应用领域广泛,能够胜任从机器翻译、文本概要撰写、情绪分析到问答等众多任务。通过对大量文本数据的
- 轻量级模型解读——轻量transformer系列
lishanlu136
#图像分类轻量级模型transformer图像分类
先占坑,持续更新。。。文章目录1、DeiT2、ConViT3、Mobile-Former4、MobileViTTransformer是2017谷歌提出的一篇论文,最早应用于NLP领域的机器翻译工作,Transformer解读,但随着2020年DETR和ViT的出现(DETR解读,ViT解读),其在视觉领域的应用也如雨后春笋般渐渐出现,其特有的全局注意力机制给图像识别领域带来了重要参考。但是tran
- ComfyUI AnimateDiff-Lightning 教程
jayli517
ComfyUIAIGC
介绍项目主页:https://huggingface.co/ByteDance/AnimateDiff-Lightning在线测试(有墙):https://huggingface.co/spaces/ByteDance/AnimateDiff-Lightning国内镜像:https://hf-mirror.com/ByteDance/AnimateDiff-LightningAnimateDiff
- transformer架构(Transformer Architecture)原理与代码实战案例讲解
AI架构设计之禅
大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
transformer架构(TransformerArchitecture)原理与代码实战案例讲解关键词:Transformer,自注意力机制,编码器-解码器,预训练,微调,NLP,机器翻译作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来自然语言处理(NLP)领域的发展经历了从规则驱动到统计驱动再到深度学习驱动的三个阶段。
- 英伟达(NVIDIA)B200架构解读
weixin_41205263
芯际争霸GPGPU架构gpu算力人工智能硬件架构
H100芯片是一款高性能AI芯片,其中的TransformerEngine是专门用于加速Transformer模型计算的核心部件。Transformer模型是一种自然语言处理(NLP)模型,广泛应用于机器翻译、文本生成等任务。TransformerEngine的电路设计原理主要包括以下几个方面:
- AI学习笔记:pdf-document-layout-analysis
hillstream3
人工智能学习笔记pdfAI编程nlp
一直在学AI,但没有连续的时间来尝试。现在终于失业了,有大把连续的时间来动手。之前准备了一台I5-1400F+RTX360012G的电脑,现在终于派上用场了。由于一直在从事无线通信相关的工作,所以,拿到一份很长的AI可能与通信在哪些方面,能够结合的pdf文档。所以,打算从这份文档开始入手。第一个找到的项目的是这个:https://huggingface.co/HURIDOCS/pdf-docume
- QLoRa使用教程
云帆@
训练peft人工智能
一、定义定义案例1二、实现定义QLoRa:量化+LoRa.网址:https://huggingface.co/docs/peft/main/en/developer_guides/quantization案例11.4bit量化+LoRaimporttorchfromtransformersimportBitsAndBytesConfigconfig=BitsAndBytesConfig(load_
- 【拥抱AI】浅谈Prompt的书写规范及要点
奔跑草-
人工智能人工智能promptRAGAI编程大模型LLMAIAgent
Prompt是什么?Prompt是一种技术,它通过自然语言处理来引导用户与机器之间的交互。在人工智能领域,Prompt通常用于生成文本,例如对话系统、机器翻译和文本摘要等应用。它也用于训练模型,以使其能够理解和生成人类语言。Prompt的工作原理是通过建立相应的语料库和语义解析模型,将自然语言转换为机器可识别的指令。在大模型时代,Prompt的使用尤为重要,因为它可以帮助模型更好地理解用户的意图并
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- llama.cpp本地部署大模型
张兆坤的那些事
大模型llama.cpp
llama.cpp是一个C++库,用于简化LLM推理的设置,它使得在本地机器上运行大模型(GGUF格式)成为可能。官网:https://github.com/ggerganov/llama.cpp模型库:https://huggingface.co/HF-Mirror魔搭社区安装并且使用llama.cpp0.安装llama.cpp官方文档:https://github.com/ggerganov/
- Deepspeed 结合huggingface Trainer实现多机分布式训练
ningzhao
分布式
目前工作中只使用了单机多卡做微调训练,为了提升训练效率,特实验多机多卡分布式训练。一、环境准备本试验使用两台机器(manager,worker),操作系统ubuntu22.4,每台机器有4个GPU为了使安装配置统一,使用docker容器,docker的安装这里不做介绍。1.网络配置-创建overlay共享网络初始化集群,在manager机器上运行:dockerswarminit#输出结果:Swar
- 解决Can‘t load tokenizer for ‘bert-base-chinese‘.问题
CSDNhdlg
NLPbert人工智能深度学习自然语言处理
报错提示:OSError:Can'tloadtokenizerfor'bert-base-chinese'.Ifyouweretryingtoloaditfrom'https://huggingface.co/models',makesureyoudon'thavealocaldirectorywiththesamename.Otherwise,makesure'bert-base-chinese
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- conda进行transformers安装
大多_C
conda
首先建立新环境condacreate-nmyenvpython=3.8安装numpy和pytorchcondainstallnumpycondainstallpytorchtorchvisiontorchaudiocpuonly-cpytorch-cconda-forge其余的一些环境配置huggingface_hub0.16.4py_0huggingfaceimportlib-metadata6
- 如何快速下载huggingface模型——全方法总结
u013250861
#elasticsearch大数据搜索引擎
原文发布于本人博客:如何快速下载huggingface大模型-padeoe的小站这是博主第一次上知乎发文章,欢迎评论、交流!Update:推荐huggingface镜像站:https://hf-mirror.com。Update:推荐官方的huggingface-cli命令行工具、以及本人开发的
- NLP从零开始------17.文本中阶处理之序列到序列模型(2)
人生百态,人生如梦
nlp从零开始自然语言处理人工智能
3.学习序列到序列模型可以看成一种条件语言模型,以源句x为条件计算目标句的条件概率该条件概率通过概率乘法公式分解为从左到右每个词的条件概率之积:序列到序列模型的监督学习需要使用平行语料,其中每个数据点都包含一对源句和目标句。以中译英机器翻译为例,平行语料的每个数据点就是一句中文句子和对应的一句英文句子。机器翻译领域较为有名的平行语料库来自机器翻译研讨会(workshoponmachinetrans
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- AI 大模型在文本生成任务中的创新应用
AI_Guru人工智呢
人工智能
概述随着人工智能技术的飞速发展,大模型在文本生成任务中的应用越来越广泛。这些模型通过深度学习技术,能够生成连贯、有意义的文本,甚至在某些情况下达到与人类写作难以区分的程度。本文将探讨AI大模型在文本生成任务中的创新应用,包括自动文摘、机器翻译、创意写作等领域。自动文摘自动文摘是指从给定文本中自动提取关键信息,生成简短摘要的过程。这对于处理大量文本数据、快速获取信息尤为重要。代码示例:基于BERT的
- 求教大佬指导,可有偿
七十二@八十一
大数据github开源软件开源科技webviewpython
想问一下有没有大佬在用GitHub和huggingface的我是最近刚接触这两个开源社区非程序员所以完全看不懂上面的代码啥的但是想在上面下载一些comfyui的大模型却不知道在哪里下有没有大佬指导一下给我大概通俗易懂的讲解一下这两个开源社区上面的每个版块的内容(我不白嫖,也可以付费,线上指导,时间大概15-30分钟左右,¥100。只要能给我讲明白就好。)或者有没有什么推荐的课程可以看来学习的呀!!
- Hugging Face教程
小牛笔记
自然语言处理人工智能自然语言处理
HuggingFace教程1.引言在当今数字化时代,自然语言处理(NLP)在各个领域中扮演着重要角色。从文本分类、情感分析到机器翻译和对话系统,NLP技术的应用日益广泛。在NLP领域,HuggingFace是一个备受欢迎的开源工具库,提供了丰富的预训练模型和强大的工具,帮助开发者快速构建和部署NLP应用。2.HuggingFace简介HuggingFace是一个专注于NLP的开源组织,致力于提供易
- windows系统huggingface连接不上的解决方案
herosunly
windowshuggingface连接不上解决方案
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 【HuggingFace Transformers】BertIntermediate 和 BertPooler源码解析
CS_木成河
HuggingFace深度学习人工智能bertpython大模型Transformer
BertIntermediate和BertPooler源码解析1.介绍1.1位置与功能1.2相似点与不同点2.源码解析2.1BertIntermediate源码解析2.2BertPooler源码解析1.介绍1.1位置与功能(1)BertIntermediate位置:位于BertLayer的注意力层(BertSelfAttention)和输出层(BertOutput)之间。功能:它执行一个线性变换(
- 在浏览器上使用transformers.js运行(WebGPU)RMBG-1.4进行抠图(背景移除)
shizidushu
WebGPUtransformers.jsRMBG-1.4抠图
在浏览器上使用transformers.js运行(WebGPU)RMBG-1.4进行抠图(背景移除)说明:首次发表日期:2024-08-28官方Github仓库地址:https://github.com/xenova/transformers.js/tree/main/examples/remove-background-client准备下载onnx模型文件:https://huggingface
- Firefly多轮对话微调书生·浦语InternLM-7B实践
u013250861
#LLM/预训练&SFT人工智能chatgpt
本篇文章主要介绍使用Firefly项目对书生·浦语InternLM-7B进行微调的工作。Firefly项目链接:https://github.com/yangjianxin1/Fireflyfirefly-internlm-7b模型权重:https://huggingface.co/YeungNLP/firefly-internlm-7b01书生·浦语InternLMInternLM,即书生·浦语
- RNN及其变体
豫儿啊~
lstm人工智能rnn
RNN及其变体RNN模型定义循环神经网络:一般接受的一序列进行输入,输出也是一个序列作用和应用场景:RNN擅长处理连续语言文本,机器翻译,文本生成,文本分类,摘要生成RNN模型的分类根据输入与输出结构NVsN:输入和输出等长,应用场景:对联生成;词性标注;NERNVs1:输入N,输出为单值,应用场景:文本分类1VsN:输出是一个,输出为N,应用场景:图片文本生成NVsM:输入和输出不等长,应用场景
- 文字模型训练分析评论(算法实战)
富士达幸运星
算法人工智能机器学习
文字模型训练,尤其是在自然语言处理(NLP)领域,是构建能够理解、解释、生成人类语言系统的核心步骤。这类模型广泛应用于文本分类、情感分析、机器翻译、聊天机器人、摘要生成等多个方面。针对文字模型训练后的分析评论,可以从以下几个方面进行:1.性能评估准确率/错误率:评估模型在测试集上的准确率或错误率是最直接的方式,这能反映模型的基本性能。混淆矩阵:对于分类任务,混淆矩阵可以详细展示模型在各个类别上的表
- 大模型训练优化方法
少喝冰美式
人工智能大语言模型ai大模型大模型应用LLM大模型训练计算机技术
写在前面在训练模型尤其是大模型的时候,如何加快训练速度以及优化显存利用率是一个很关键的问题。本文主要参考HF上的一篇文章:https://huggingface.co/docs/transformers/perf_train_gpu_one,以及笔者在实际训练中的一些经验,给出一些比较实用的方法。先看一个总览的表:方法加快训练速度优化显存利用率BatchsizechoiceYesYesGradie
- HuggingFace - linux环境 修改下载默认缓存路径
如果曾经拥有
LLMlinux缓存人工智能
原文:不会修改HuggingFace模型下载默认缓存路径?一篇教会你!_使用huggingface下载bert保存在哪里怎么看-CSDN博客Howtochangehuggingfacetransformersdefaultcachedirectory-StackOverflowlinux系统解决huggingface下载缓存不够的问题_清理huggingface缓存-CSDN博客本人两种方法均尝试
- [论文笔记] LLM数据集——LongData-Corpus
心心喵
论文笔记服务器ubuntulinux
https://huggingface.co/datasets/yuyijiong/LongData-Corpus1、hf的数据在开发机上要设置sshkey,然后cat复制之后在设置在hf上2、中文小说数据在云盘上清华大学云盘下载:#!/bin/bash#BaseURLbase_url="https://cloud.tsinghua.edu.cn/d/0670fcb14d294c97b5cf/fi
- 论文:Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks
Ian_Wonder
论文阅读
论文:Retrieval-AugmentedGenerationforKnowledge-IntensiveNLPTaskscode:https://github.com/huggingface/transformerscode:https://github.com/huggingface/transformers/blob/master/model_cards/facebook/rag-toke
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l