- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- AI在虚拟客户服务中的应用:提供24_7支持
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟客户服务中的应用:提供24/7支持关键词:虚拟客服,自然语言处理(NLP),聊天机器人,对话系统,深度学习,用户支持,自动化1.背景介绍随着互联网和移动互联网的迅速发展,客户服务成为各大企业提升竞争力的重要环节。但传统的客服模式存在诸多痛点:人力成本高、响应时间慢、工作时间有限等。在企业面临全时用户需求和竞争压力日益加剧的当下,如何以更低的成本、更快的速度、更高效的资源利用率,持续提供优
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- 微调特定于域的搜索的文本嵌入:附Python代码详解
人工智能
微调特定于域的搜索的文本嵌入:附Python代码详解阅读时长:20分钟发布时间:2025-02-02近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】嵌入模型将文本表示为具有语义意义的向量。尽管它们可以很容易地用于无数的用例(例如检索、分类),但通用嵌入模型在特定领域的任务上可能表现不佳。
- 【深度学习】Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,论文
XD742971636
深度学习机器学习深度学习transformer人工智能
必读文章:https://blog.csdn.net/qq_37541097/article/details/121119988SwinTransformer:HierarchicalVisionTransformerusingShiftedWindows论文:https://arxiv.org/abs/2103.14030代码:https://github.com/microsoft/Swin-
- LSTM 网络在强化学习中的应用
AI天才研究院
LLM大模型落地实战指南AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSTM网络在强化学习中的应用关键词:LSTM、强化学习、时序依赖、长期记忆、深度Q网络、策略梯度、Actor-Critic摘要:本文深入探讨了长短期记忆(LSTM)网络在强化学习领域的应用。我们将详细介绍LSTM的核心概念、结构和工作原理,以及它如何解决传统循环神经网络面临的长期依赖问题。文章重点分析了LSTM在强化学习中的多种应用场景,包括深度Q网络、策略梯度方法和Actor-Critic架构
- 数据挖掘常用算法
kaiyuanheshang
AI数据挖掘算法人工智能
文章目录基于机器学习~~线性/逻辑回归~~树模型~~贝叶斯~~~~聚类~~集成算法神经网络~~支持向量机~~~~降维算法~~基于机器学习线性/逻辑回归类似单层神经网络y=k*x+b树模型优点可以做可视化分析速度快结果稳定依赖前期对业务和数据的理解贝叶斯贝叶斯依赖先验概率,先验知识越准,结果越好聚类集成算法xgboostlightbgm神经网络在文本、视觉领域效果非常好。但是过程黑盒,缺乏解释性支持
- 【中科院1区】Matlab实现黏菌优化算法SMA-RF锂电池健康状态估计算法研究
matlab科研助手
matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍摘要锂离子电池作为一种重要的储能器件,在电动汽车、便携式电子设备等领域发挥着至关重要的
- 基于LeNet-5实现交通标志分类任务
鱼弦
机器学习设计类系统分类深度学习人工智能
基于LeNet-5实现交通标志分类任务介绍LeNet-5是由YannLeCun等人在1998年提出的一种卷积神经网络(CNN)结构,最初用于手写数字识别。由于其简单高效的架构,LeNet-5也被广泛应用于图像分类任务,包括交通标志识别。应用使用场景交通标志分类在智能驾驶、车道辅助系统等领域有重要应用,可以帮助自动驾驶车辆识别道路上的各种交通标志,从而进行相应的决策,提高行车安全性。原理解释LeNe
- 【深度学习】因果推断与机器学习的高级实践 数学建模_问题根因 分析 机器学习
2401_84239830
程序员深度学习机器学习数学建模
现阶段深度学习有三大特征:数据驱动:即数据训练,将数据输入到模型中进行训练;关联学习:模型基于给定训练数据集,进行关联学习;概率输出:即最后的输出,判断这个图片有“狗“的概率是多少。以数据驱动、关联学习、概率输出为特征的深度学习存在什么问题呢?以一个简单的图片识别问题为例:识别一张图片中是否有狗。在很多预测问题中,我们拿到的数据集往往都是有偏的,比如我们拿到的数据中有80%的图片中狗都在草地上,这
- 《深度学习入门:梯度下降法全解析,小白必看!》
Lemon_wxk
深度学习
目录一、引言二、什么是梯度下降?2.1误差的计算2.2梯度的计算2.3参数更新2.4重复迭代三、梯度下降法的几种主要类型1.批量梯度下降(BatchGradientDescent)2.随机梯度下降(StochasticGradientDescent,SGD)3.小批量梯度下降(Mini-BatchGradientDescent)四、梯度下降的挑战与解决方案1.学习率的选择2.局部最小值与鞍点3.梯
- keras快速上手-基于python的深度学习实践-基于索引的深度学习对话模型-源代码...
weixin_34162401
该章的源代码已经调通,如下,先记录下来,再慢慢理解#!/usr/bin/envpython#coding:utf-8#In[1]:importpandasaspdimportnumpyasnpimportpickleimportkerasfromkeras.modelsimportSequential,Modelfromkeras.layersimportInput,Dense,Activatio
- yolo是什么,有什么优缺点以及YOLO的应用场景?
cesske
YOLO
目录前言一、yolo是什么?二、YOLO的优点三、YOLO的缺点四、YOLO的应用场景总结前言这里我们来讲一下yolo是什么,有什么优缺点?一、yolo是什么?“YOLO”在计算机视觉和深度学习领域是一个特定的算法框架,全称是“YouOnlyLookOnce”。这个算法最初由JosephRedmon、SantoshDivvala、RossGirshick和AliFarhadi在2015年提出,旨在
- 人机交互:面部识别_14.面部识别在虚拟现实和增强现实中的应用
zhubeibei168
机器人及导航人机交互vrar开发语言机器人导航与定位
14.面部识别在虚拟现实和增强现实中的应用14.1虚拟现实中的面部识别在虚拟现实(VR)环境中,面部识别技术可以显著提升用户体验,使其更加沉浸和自然。通过识别用户的面部表情,VR系统可以实时调整虚拟角色的行为,增强用户与虚拟世界的互动。14.1.1面部表情识别面部表情识别是虚拟现实中最常见的应用之一。通过摄像头捕捉用户的面部图像,使用计算机视觉算法识别出用户的表情,如微笑、惊讶、愤怒等,虚拟角色可
- AI真的能理解我们这个现实物理世界吗?深度剖析原理、实证及未来走向
AI_DL_CODE
人工智能深度学习AIAI理解世界
摘要:当下,AI与深度学习广泛渗透生活各领域,大模型与海量数据加持下,其是否理解现实物理世界引发热议。文章开篇抛出疑问,随后深入介绍AI深度学习基础,包含神经网络架构、反向传播算法。继而列举AI在物理场景识别、实验数据分析中显露的“理解”迹象,也点明常识性错误、极端场景失效这类反例。从信息论、物理启发式算法剖析理论支撑,探讨融合物理知识路径,并延展至跨学科应用、评估维度、伦理社会问题,最终展望AI
- 攻克设备数据质量难题:深度学习应用的数据基石搭建教程(DBSCAN 聚类算法)
AI_DL_CODE
深度学习运维算法数据质量DBSCAN聚类算法
摘要:在深度学习赋能设备管理的浪潮中,数据质量成为关键瓶颈。本文聚焦设备数据采集与预处理阶段面临的噪声干扰、数据缺失等难题,深入讲解强化采集端管控的策略,详细剖析聚类、统计法及线性回归模型在数据清洗与补全中的应用原理,并结合振动传感器数据实例给出可实操的Python代码。旨在为从业者提供一站式解决方案,助力打造高质量设备数据集,为深度学习模型高效运行筑牢根基,推动设备管理智能化落地。文章目录攻克设
- 人工智能在药物研发中的应用 - 从靶点发现和化合物筛选:利用AI深度学习技术加速药物研发流程
AI_DL_CODE
人工智能深度学习药物研发deeplearning
摘要:本文探讨了人工智能(AI)在药物研发中的应用,强调了AI在加速药物发现、降低成本和提高成功率方面的重要性。文章概述了AI在药物靶点识别、化合物筛选、药物设计优化等方面的应用,并详细介绍了机器学习和深度学习的基本原理。通过一个实操案例,展示了如何利用AI技术对化合物数据进行分析,预测潜在的药物候选物。案例包括数据预处理、模型训练、评估和优化等步骤,证明了AI在提高药物研发效率和准确性方面的潜力
- pytorch实现循环神经网络
纠结哥_Shrek
pytorchrnn深度学习
人工智能例子汇总:AI常见的算法和例子-CSDN博客PyTorch提供三种主要的RNN变体:nn.RNN:最基本的循环神经网络,适用于短时依赖任务。nn.LSTM:长短时记忆网络,适用于长序列数据,能有效解决梯度消失问题。nn.GRU:门控循环单元,比LSTM计算更高效,适用于大部分任务。网络类型优势适用场景RNN计算简单,适用于短时序列语音、文本处理(短序列)LSTM适用于长序列,能记忆长期信息
- PyTorch 官方文档 中文版本
圣心
pytorch机器学习
文档来源https://pytorch.cadn.net.cn大多数机器学习工作流都涉及处理数据、创建模型、优化模型参数,并保存经过训练的模型。本教程向您介绍完整的ML工作流在PyTorch中实现,并提供了用于了解有关每个概念的更多信息的链接。我们将使用FashionMNIST数据集来训练一个神经网络,该神经网络预测输入图像是否属于到以下类别之一:T恤/上衣、裤子、套头衫、连衣裙、外套、凉鞋、衬衫
- 基于 YOLOv8+PyQt5 的无人机红外目标检测系统:开启智能监测新时代
人工智能教学实践
人工智能YOLOqt无人机
基于YOLOv8+PyQt5的无人机红外目标检测系统:开启智能监测新时代【毕业与课程大作业参考】基于yolov8+pyqt5界面自适应的无人机红外目标检测系统demo.zip资源-CSDN文库在科技飞速发展的今天,无人机技术在各个领域的应用越来越广泛。为了提升无人机在复杂环境下的目标检测能力,结合先进的深度学习算法和图形用户界面开发技术,打造功能强大的无人机红外目标检测系统成为了研究热点。本文将详
- 基于深度学习的视觉检测小项目(十六) 用户管理界面的组态
深蓝海拓
基于YOLO的视觉检测小项目深度学习人工智能pythonpyqtqt
分组和权限:用户分为三个组,管理员、普通用户、访客。•管理员的权限和作业范围:添加和删除用户、更改所有用户的信息(用户名、登录密码、所在分组等)、查看和备份以及复制数据库;•普通用户的权限和作业范围:更改自己的用户名和密码、开展工作业务、查看数据库;•访客的权限和作业范围:查看数据库。用于用户管理的界面:既然用到了用户的管理,那么就必然涉及到用户列表的展示方式了。QT对于列表内容的展示方式有:QC
- 深度学习基因组学+机器学习单细胞分析,当下最火热研究方向!
qwmb919
人工智能深度学习机器学习python
深度学习已经被广泛应用于基因组学研究中,利用已知的训练集对数据的类型和应答结果进行预测,深度学习,可以进行预测和降维分析。深度学习模型的能力更强且更灵活,在适当的训练数据下,深度学习可以在较少人工参与的情况下自动学习特征和规律。调控基因组学,变异检测,致病性评分成功应用。深度学习可以提高基因组数据的可解释性,并将基因组数据转化为可操作的临床信息。深度学习通过强大的深度神经网络模型从高维大数据中自动
- <深入浅出图神经网络> 读书笔记
数学工具构造器
GNN
文章目录笔记GNN代码chapter5|GCN分析TODO改代码得到的结论chapter6|GraphSage分析TODO去今年刚出就买了.一查豆瓣评分比我想的还低(我这种小白都能看出一些错误),有1说1对于入门还是可以的,至少能知道GNN大概的发展路线,如图卷积→\rightarrow→GCN→\rightarrow→GNN等.如果小白直接上手GNN啥的,连图滤波,空域频域等概念都不知道,也只能
- 深度学习之线性代数
ousinka
DJLd2lcoderJava开发者动手学习深度学习深度学习java机器学习
深度学习之线性代数标量如果你从来没有学过线性代数或机器学习,那么你过去的数学经历可能是一次只想一个数字。如果你曾经用钱买个茶叶蛋,或者在付过打车费,那么你已经知道如何做一些基本的事情,比如在数字间相加或相乘。例如,上海的温度现在为13摄氏度。严格来说,我们称仅包含一个数值的叫标量(scalar)。在数学表示法,其中标量变量由普通小写字母表示(例如,x、y和z)。我们用R表示所有(连续)实数标量的空
- 一、深度学习与线性代数
新禾
深度学习线性代数深度学习线性代数人工智能
一、深度学习与线性代数在计算机的内存或硬盘中,数据通常是以字符集编码成0和1的形式进行存储的,读取时再以相同字符集进行解码进行显示的。然而在深度学习中,数据在内存或显存中的表示都是以向量的形式表示的。1、字符在计算机中的表示在我们所接触到的手机、电脑、电视所呈现的字符,其原理大概:就是存储在内存、硬盘中的0和1的数字被解码成字符再去映射到屏幕上。目前最常见的编码格式有:ASCII:初代计算机采用的
- 深度学习——线性代数
取个名字真难啊啊
深度学习深度学习线性代数
文章目录1.基本数学概念2.线性相关和生成子空间3.范式4.特殊类型的矩阵和向量5.特征分解6.奇异值分解1.基本数学概念标量(scalar):一个标量就是一个单独的数,它不同于线性代数中研究的其他大部分对象(通常是多个数的数组)。我们用斜体表示标量。标量通常被赋予小写的变量名称。当我们介绍标量时,会明确它们是哪种类型的数。比如,在定义实数标量时,我们可能会说“令s∈R表示一条线的斜率”;在定义自
- 深度学习的应用场景及常用技术
eso1983
深度学习
深度学习作为机器学习的一个重要分支,在众多领域都有广泛的应用,以下是一些主要的应用场景及常用技术。1.应用场景1.计算机视觉图像分类描述:对图像中的内容进行分类,识别出图像中物体所属的类别。例如,在安防领域,通过对监控摄像头拍摄的图像进行分类,判断是否有可疑人员或物品出现;在电商领域,对商品图片进行分类,方便用户搜索和筛选商品。示例:识别图片中的动物是猫还是狗,或者判断一张图片是风景照还是人物照。
- 深度学习-图像数据标注工具使用(LabelImg和BBox)
AI研习图书馆
方法教程LabelImgBBox图像标注工具
文章与视频资源多平台更新微信公众号|知乎|B站|头条:AI研习图书馆深度学习、大数据、IT编程知识与资源分享,欢迎关注,共同进步~图像数据标注工具的使用教程1.LabelImgLabelImg下载地址:https://github.com/tzutalin/labelImg(下载源码,需要编译)Windows和Linux系统可运行软件:http://tzutalin.github.io/label
- GPU架构(1.2)--GPU SoC 中的 CPU 架构
小蘑菇二号
手把手教你学GPUSoC芯片智能电视
目录详细介绍GPUSoC中的CPU架构1.CPU核心概述ARMCortex-A72ARMCortex-A762.多线程处理多核架构多线程支持3.任务调度任务调度器动态调度4.内存管理内存层次结构内存管理技术5.接口和通信总线接口I/O接口6.功耗和热管理功耗优化热管理7.应用实例边缘计算图形处理深度学习结语详细介绍GPUSoC中的CPU架构GPUSoC不仅集成了高性能的GPU,还集成了高性能的CP
- matlab神经网络遥感反演,基于BP神经网络的盐渍土盐分遥感反演模型研究
老许的花开
matlab神经网络遥感反演
采用遥感技术和BP神经网络技术,结合野外实测的盐渍土光谱特征和实验室化验的土壤含盐数据,对盐渍土盐分的遥感反演进行了模型的设计与编程实现。BP神经网络模型的预测精度在62.5%,明显高于传统统计模型的预测精度,表明BP神经网络能较好地模拟土壤含盐量与光谱数据之间的关系,可用于建立土壤盐分遥感反演模型。更多还原【Abstract】Theresearchonsalinityinversionfromr
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象