- BERT(Bidirectional Encoder Representations from Transformers)
jerwey
bert人工智能深度学习
BERT(BidirectionalEncoderRepresentationsfromTransformers)是由Google于2018年提出的一种基于Transformer架构的预训练语言模型,属于大型语言模型(LLM)的一种重要类型。其核心特点和技术定位如下:1.核心架构Encoder-Only结构:BERT仅使用Transformer的编码器(Encoder),通过多层堆叠捕捉文本的双向
- 大语言模型(LLM)按架构分类
jerwey
语言模型分类人工智能
大语言模型(LLM)按架构分类的深度解析1.仅编码器架构(Encoder-Only)原理双向注意力机制:通过Transformer编码器同时捕捉上下文所有位置的依赖关系#伪代码示例:BERT的MLM任务masked_input="The[MASK]satonthemat"output=encoder(masked_input)#预测[MASK]="cat"预训练任务:掩码语言建模(MLM):随机遮
- jdk升级到11问题系列-第三方依赖使用了BASE64Decoder
uplinker
javajavajdk11
问题描述:第三方依赖包,目前出现问题的是某银行的sdk导致的使用了sun.misc.BASE64Decoder但是在jdk11这个版本该类已经被删除,导致运行是出现错误Causedby:java.lang.NoClassDefFoundError:sun/misc/BASE64Encoder替换方式:Base64.Encoderencoder=Base64.getEncoder();Base64.
- ffmpeg 视频编码流程及主要API
melonbo
FFMPEGffmpeg音视频
一、编码流程初始化组件配置编码器参数打开编码器处理输入帧编码循环写入输出数据收尾释放资源二、核心步骤与API详解1.初始化与参数配置注册组件(旧版本需手动注册,新版本自动处理)avformat_network_init();//网络相关初始化(可选)查找编码器AVCodec*codec=avcodec_find_encoder(AV_CODEC_ID_H264);//支持H.264/HEVC等创建
- GPT4.0带记忆API源码
沐晨API
php
以下为输出截图:需要在同路径中添加一个名为conversations的文件夹原本输出为英文,对接翻译接口沐晨API翻译:https://mcapi.muwl.xyz/api/fanyi2.php,可以自己改成别的,不过改了输出的格式不一样,代码也需要变动沐晨API:沐晨免费稳定API,沐晨收录站,欢迎前来申请代码json_encode($messages)]);//构建GET请求的查询字符串$ch
- 【大模型学习 | BLIP2原理】
九年义务漏网鲨鱼
人工智能深度学习语言模型多模态大模型
BLIP-2:BootstrappingLanguage-ImagePre-trainingwithFrozenImageEncodersandLargeLanguageModels目前(2023)的图文模型都是基于端到端训练方式,大规模的模型和数据集导致了在预训练过程需要的大量计算。作者提出一种从离线、梯度冻结的图像、语言模型中提升图文的预训练模型。为了联系两个不同模态预训练模型,作者提出一种使
- 【大模型学习 | BLIP原理】
九年义务漏网鲨鱼
pytorch人工智能深度学习大模型多模态
BLIP:BootstrappingLanguage-ImagePre-trainingforUnifiedVision-LanguageUnderstandingandGeneration作者指出,现有的视觉-语言预训练(Vision-LanguagePre-training,VLP)模型在语言理解与生成任务上难以同时取得优异表现:一方面,基于编码器(encoder-based)的模型在生成任务
- 大模型学习 (Datawhale_Happy-LLM)笔记7: Encoder-Decoder PLM
lxltom
学习笔记languagemodel自然语言处理神经网络人工智能深度学习
大模型学习(Datawhale_Happy-LLM)笔记7:Encoder-DecoderPLM1.Encoder-Decoder架构概述1.1架构基础Encoder-DecoderPLM是基于原始Transformer架构的完整实现,它同时保留了编码器(Encoder)和解码器(Decoder)两个核心组件。这种设计使得模型能够兼具文本理解和生成的双重能力,特别适合处理序列到序列(Seq2Seq
- [AI笔记]-LLM中的3种架构:Encoder-Only、Decoder-Only、Encoder-Decoder
Micheal超
AI笔记人工智能笔记架构
一、概述架构描述特点案例Encoder-Only仅包含编码器部分这类模型主要专注输入数据中提取特征或上下文信息,通常不需要生成新内容、只需要理解输入的任务,如:分类(文本分类、情感分析等)、信息抽取、序列标注等。在这种架构中,所有的注意力机制和网络层都集中在编码输入数据上,其输出通常是关于输入的复杂语义表示。谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4Decoder-Only也被称为
- 前端base64遇到的坑:window.btoa中文报错的修复方案
前端
问题是这样的:同事在使用的过程中发现一个问题:点击确定按钮后,有个报错提示。如下截图所示:报错文本是:invalidcharactererrorfailedtoexecutebtoaonwindowthestringtobeencodedcontainscharactersoutsideofthelatin1range详情:前端base64遇到的坑:window.btoa中文报错的修复方案
- nlp遇到的问题
1.AttributeError:'CodeGenTokenizer'objecthasnoattribute'encoder'pipinstalltransformers==4.33.22.ImportError:Using`low_cpu_mem_usage=True`ora`device_map`requiresAccelerate:`pipinstallaccelerate`pipinst
- python 百度云api_Python使用百度API上传文件到百度网盘代码分享
weixin_39775577
python百度云api
#coding:UTF-8importurllibimporturllib2__author__='Administrator'fromposter.encodeimportmultipart_encodefromposter.streaminghttpimportregister_openersregister_openers()defupload(fileName):"""通过百度开发者API
- 第 1 部分 - 序列化
pythondjango
介绍本教程将介绍如何创建一个简单的在线代码高亮WebAPI。在此过程中,将介绍DjangoRESTFramework的各个组件,并让你全面了解它们是如何协同工作的。本教程内容较为深入,所以在开始之前,你可能需要准备一块饼干和一杯你最喜欢的饮料。如果你只是想快速了解内容,可以查看快速入门文档。注意:本教程的代码可在GitHub上的encode/rest-framework-tutorial仓库中找到
- odrive软件的版本
m0_55305757
stm32电机嵌入式硬件odrive
odrive软件的版本0.4.0通信方面引入一个fibre变复杂了(节点还是手工生成的),cpp程序开始变多了。(sensorless我看到变成独立文件了)pythontool开始使用pip安装形式。0.5.0开始支持spi的encoder,as5047之类0.5.1据说之后的版本controlloop开始变化0.5.2开始应该是大修改了//RequiredtouseOC4forADCtrigge
- buuctf新生赛(ACTF2020)
HfLllo
linux运维服务器
1.Upload:文件上传,phtml2.BackupFile:codesearch找备份文件,弱类型比较==(只要求值相等)3.Exec:网站;ls(linux列出当前目录有哪些文件和目录)网站;ls/(看根目录里有什么内容)查看文件:web;cat/file4.Include:php://filter/read=convert.base64-encode/resource=file.php,再
- 终端里的AI黑魔法:OpenCode深度体验与架构揭秘
许泽宇的技术分享
人工智能AICode
“你以为AI只能在网页上点点鼠标?不,真正的极客,AI要在终端里飞!”各位码农、终端党、AI爱好者们,今天我要带你们走进一个神秘的世界——OpenCode。这是一个让AI在你终端里“蹦迪”的神器。你还在用ChatGPT网页版复制粘贴代码?你还在羡慕ClaudeCode的智能补全?醒醒吧,OpenCode已经把AI搬进了终端,开源、可扩展、还不挑AI模型,关键是——它真的很酷!一、什么是OpenCo
- python学习记录14
彤银浦
学习python
1.字符串的编码和解码不同的计算机之间在信道中传输的信息本质上是二进制数据,因此当你有一串文本需要传输给另外一台电脑时,则需要将这串文本编译为二进制类型的数据。python中的二进制数据类型称为byte类型。将字符串的str类型转变为byte类型称为字符串的编码,将byte类型转变为str类型称为字符串的解码。字符串的编码用到的是encode的方法,语法格式为:string.encode(enco
- swift 对象转Json
泓博
swift
在Swift中将对象转换为JSON可以通过以下方法实现:使用Codable协议Swift的Codable协议(Encodable和Decodable的组合)是处理JSON编码和解码的推荐方式。structPerson:Codable{varname:Stringvarage:Int}letperson=Person(name:"John",age:30)letencoder=JSONEncoder
- 基于Transformer实现机器翻译
yyyyurina.
transformer机器翻译深度学习
目录一、前言1.1什么是Transformer?1.2Transfomer的基本结构1.2Transformer的重要组成部分1.2.1位置编码(PositionalEncode)1.2.2自注意力机制(Self-Attention)1.2.3多头注意力(Multi-HeadAttention)1.2.4位置感知前馈层(Position-wiseFFN)1.2.5残差连接与层归一化二、AutoDL
- python编码处理:unicode字节串转成中文 各种字符串举例说明
sdlcwangsong
python编码处理:unicode字节串转成中文各种字符串举例说明编码问题一直是很头痛的问题:当字符串是:'\u4e2d\u56fd'>>>s=['\u4e2d\u56fd','\u6e05\u534e\u5927\u5b66']>>>str=s[0].decode('unicode_escape')#.encode("EUC_KR")>>>printstr中国当字符串是:'东
- Logstash-Logback-Encoder 教程
孟元毓Pandora
Logstash-Logback-Encoder教程logstash-logback-encoderLogbackJSONencoderandappenders项目地址:https://gitcode.com/gh_mirrors/lo/logstash-logback-encoder本教程将引导您了解logstash-logback-encoder项目,这是一个用于生成JSON格式日志的Logb
- LSTM、GRU 与 Transformer网络模型参数计算
suixinm
lstmgrutransformer
参数计算公式对比模型类型参数计算公式关键组成部分LSTM4×(embed_dim×hidden_size+hidden_size²+hidden_size)4个门控结构GRU3×(embed_dim×hidden_size+hidden_size²+hidden_size)3个门控结构Transformer(Encoder)12×embed_dim²+9×embed_dim×ff_dim+14×e
- 预训练语言模型
lynnzon
语言模型人工智能自然语言处理
1.1Encoder-onlyPLMEncoder-only架构是Transformer的重要分支,专注于自然语言理解(NLU)任务,核心代表是BERT及其优化模型(RoBERTa、ALBERT)。其特点是:仅使用Encoder层:堆叠多层TransformerEncoder,捕捉文本双向语义。预训练任务:通过掩码语言模型(MLM)学习上下文依赖。应用场景:文本分类、实体识别、语义匹配等NLU任务
- 大模型学习 (Datawhale_Happy-LLM)笔记4: 预训练语言模型
lxltom
学习笔记语言模型人工智能bertgpt
大模型学习(Datawhale_Happy-LLM)笔记4:预训练语言模型一、概述本章按Encoder-Only、Encoder-Decoder、Decoder-Only的顺序来依次介绍Transformer时代的各个主流预训练模型,分别介绍三种核⼼的模型架构、每种主流模型选择的预训练任务及其独特优势,这也是目前所有主流LLM的模型基础。二、Encoder-onlyPLM代表:BERT及其优化版本
- 预训练语言模型之:Encoder-only PLM
抱抱宝
大模型语言模型人工智能自然语言处理
1.基础架构:TransformerEncoder所有模型的基石都是TransformerEncoder结构,其核心是自注意力机制:Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q,K,V)=\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)VAttention(Q,K,V)=softmax(dk
- windows使用mingw+cmake编译二维码生成库libqrencode
百口可乐__
WindowsGNU/Linux付费windowslinuxmicrosoft
libqrencode介绍LibqrencodeisafastandcompactlibraryforencodingdatainaQRCodesymbol,a2DsymbologythatcanbescannedbyhandyterminalssuchasamobilephonewithCCD.ThecapacityofQRCodeisupto7000digitsor4000characters
- QT生成二维码与linux下qrencode库编译
申卿凌
QT生成二维码与linux下qrencode库编译【下载地址】QT生成二维码与linux下qrencode库编译该项目为开发者提供了在Linux环境下使用QT框架生成二维码的完整解决方案。包含预编译的libqrencode库文件和示例源码,帮助开发者快速集成二维码生成功能。通过简单的配置,您可以在QT项目中轻松调用libqrencode库,实现高效的二维码编码与生成。无论是初学者还是经验丰富的开发
- 编码器技术解析:从基础原理到应用场景
亿只小灿灿
计算机基础日常小分享编码器
一、编码器的核心概念1.1定义与基本功能编码器(Encoder)是一种将信息从一种形式转换为另一种形式的设备或程序。其核心功能是通过特定的算法或机制,将输入信号(如模拟信号、数字数据、物理运动等)转换为便于存储、传输或处理的输出格式。在数字系统中,编码器的作用类似于"翻译官",例如:将文本字符转换为二进制代码(如ASCII编码)将视频图像压缩为特定格式(如H.264)将机械运动转换为电信号(如旋转
- 内存的代价:如何正确与 WASM 模块传值交互
EndingCoder
WebAssembly实战与前沿应用wasm交互性能优化主线程性能javascript
关键要点线性内存模型:WebAssembly(WASM)使用单一的线性内存块,供WASM和JavaScript(JS)共享数据。高效数据交换:通过指针和ArrayBuffer,WASM和JS可以高效传递数组、对象等复杂结构。字符串处理:使用TextEncoder和TextDecoder解决字符串编码问题,确保跨语言兼容性。内存管理:Rust的Drop机制与JS的垃圾回收(GC)需协调配合,防止内存
- Transformer 中 QKV 流向全解析(含注意力机制箭头图示)
Accelemate
transformer人工智能深度学习
QKV是什么?在Attention机制中,我们通过Query(查询)与一组Key-Value(键-值)对计算注意力权重,然后用这些权重对Value进行加权求和,从而输出当前时刻关注上下文的结果。Transformer中注意力模块分布Transformer结构中含有三种注意力机制,每个机制都会涉及Q、K、V的构建和使用:编码器自注意力(EncoderSelf-Attention)解码器自注意力(De
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s