- uniapp水印相机(水印照片,图片加水印)
corekeys
uniappuni-app
在实际开发的项目中,我们有时候会遇到相机拍照上传照片的时候需要带有水印的功能。下面整理了我在自己的项目中做的水印相机(完整源码)功能实战分享给大家。水印中内容包含如下(实际包含的内容根据你的实际需求而定,这里只是以我的项目需求为例):具体日期时间,如:2023-05-2512:00:00星期四地理位置,如:江苏省南京市雨花台区软件大道19号经纬度,如:纬度:32.08405200000000,经度
- 技术干货 | i.MX 8视频开发案例全集
Tronlong创龙
工业级核心板嵌入式ARM软硬件原理图规格资料平台案例fpgaarmnxp嵌入式
前言:本文主要介绍基于NXPi.MX8MMini处理器的视频开发案例,主要包含:(1)基于GStreamer的USB摄像头视频采集、软件解码、边缘检测、显示案例。(2)基于GStreamer的网络摄像头视频采集、H.264解码、显示案例。(3)基于GigE工业相机的图像采集、显示、保存案例。(4)基于MIPICameraOV4689摄像头演示Linux子系统V4L2的使用案例。(5)H.265视频
- 《 YOLOv5、YOLOv8、YOLO11训练的关键文件:data.yaml文件编写全解》
空云风语
人工智能YOLO机器视觉目标跟踪人工智能计算机视觉YOLO
走进YOLOv5、YOLOv8、YOLO11的data.yaml在计算机视觉领域的广袤星空中,目标检测无疑是一颗璀璨的明星,它广泛应用于自动驾驶、智能安防、工业检测、医疗影像分析等众多关键领域,发挥着不可或缺的作用。而YOLO系列算法,更是以其独特的“一次看全(YouOnlyLookOnce)”理念和卓越的性能,在目标检测领域中独树一帜,成为了众多研究者和开发者的首选工具。从最初的YOLOv1横空
- uniApp实战二:仿今日相机水印功能
博主逸尘
uniApp实战uni-app数码相机javascript
文章目录1.最终效果预览2.页面实现1.最终效果预览2.页面实现页面布局拍照data定义data(){return{snapSrc:"",cvHeight:"",cvWidth:"",tKey:"时间:",addKey:"地点:",};},点击事件及方法handleTakePhotoNew(){this.snapSrc=""uni.chooseImage({count:1,success:(res
- 【开源精选】《前端铺子》:打造你的全能型小程序开发助手
平淮齐Percy
【开源精选】《前端铺子》:打造你的全能型小程序开发助手qdpz-uniapp项目基于vue-uniapp,使用colorUi与uView框架,完美支持微信小程序,包含功能:自定义TabBar与顶部、地图轨迹回放、电子签名、自定义相机/键盘、拍照图片水印、在线答题、证件识别、周边定位查询、文档预览、各种图表、行政区域、海报生成器、视频播放、主题切换、时间轴、瀑布流、排行榜、渐变动画、加载动画、请求封
- 计算机视觉|3D 点云处理黑科技:PointNet++ 原理剖析与实战指南
紫雾凌寒
AI炼金厂#深度学习#计算机视觉深度学习计算机视觉3dcnnPointNet++3d云3d云数据
一、引言在当今数字化与智能化快速发展的时代,3D点云处理技术在多个前沿领域中发挥着重要作用。特别是在自动驾驶和机器人视觉等领域,这项技术已成为实现智能化的关键支撑。以自动驾驶为例,车辆需要实时感知周围复杂的环境信息,包括行人、车辆、交通标志和路况等。3D点云数据能够提供高精度的三维空间信息,使自动驾驶车辆更准确地识别和定位周围物体,从而做出安全、合理的行驶决策。在城市街道上,自动驾驶车辆通过3D点
- Orbbec 深度相机SDK(Python)
-烂笔头-
嵌入式开发pythonsdk
1、支持系统1)开发板ARM32和ARM642)window系统2、支持的Orbbec深度摄像头型号1)AstraPlus2)AstraPro3)Astramini4)Deeyea5)Gemini3、代码功能1)数据采集和可视化2)定时唤醒任务3)磁盘空间检测4)数据采集服务监测和中断重续4、Githubhttps://github.com/zhangge2016/Orbbec_Python
- 机器视觉3D上下料技术上的分析
视觉人机器视觉
杂说3dc#人工智能AI编程opencv开发语言
机器视觉3D上下料是工业自动化领域的重要应用,通过3D视觉技术引导机器人完成物料的精准抓取、定位和放置,尤其适用于复杂、无序或高精度的场景。以下是其核心内容梳理:核心组成3D视觉系统:硬件:常用3D相机(结构光、ToF、双目视觉等),如Kinect、IntelRealSense、工业级品牌(Keyence、康耐视,苏州大视通智能科技有限公司)。软件:点云处理(如PCL库)、三维匹配算法(ICP、深
- 同一个问题看看Grok3怎么回答-什么是智能体?
释迦呼呼
AI一千问架构深度学习人工智能机器学习自然语言处理
关键要点研究表明,智能体(可能是“智能代理”的意思)在人工智能中是一个能够感知环境、自主行动以实现目标的系统。证据倾向于认为,智能体可以是简单的(如恒温器),也可以是复杂的(如自动驾驶汽车),并可能通过机器学习改进性能。关于“智能体”这一术语,存在争议,可能指的是人工智能中的智能代理,或在某些上下文中指具有物理身体的AI系统(如机器人)。什么是智能体?定义智能体在人工智能中似乎是一个能够感知其环境
- 利用CUDA与OpenCV实现高效图像处理:全面指南
快撑死的鱼
C++(C语言)算法大揭秘opencv图像处理人工智能
利用CUDA与OpenCV实现高效图像处理:全面指南前言在现代计算机视觉领域,图像处理的需求日益增加。无论是自动驾驶、安防监控,还是医疗影像分析,图像处理技术都扮演着至关重要的角色。然而,图像处理的计算量非常大,往往需要强大的计算能力来保证实时性和高效性。幸运的是,CUDA和OpenCV为我们提供了一种高效的图像处理解决方案。本篇文章将详细介绍如何结合CUDA与OpenCV,利用GPU的强大计算能
- 大话机器学习三大门派:监督、无监督与强化学习
安意诚Matrix
机器学习笔记机器学习人工智能
以武侠江湖为隐喻,系统阐述了机器学习的三大范式:监督学习(少林派)凭借标注数据精准建模,擅长图像分类等预测任务;无监督学习(逍遥派)通过数据自组织发现隐藏规律,在生成对抗网络(GAN)等场景大放异彩;强化学习(明教)依托动态环境交互优化策略,驱动AlphaGo、自动驾驶等突破性应用。文章融合技术深度与江湖趣味,既解析了CNN、PCA、Q-learning等核心算法的"武功心法"(数学公式与代码实现
- 图文详解维感科技3D深度相机在AGV/AMR的应用(一)
Vzense ToF 3D
3DToF深度相机计算机视觉视觉检测
叉式移动机器人(AGV/AMR)介绍叉式移动机器人(AGV/AMR)是在叉车上加载各种导引技术,构建地图算法,辅以避障安全技术,实现叉车的无人化作业。随着行业对自动化搬运的要求越来越高,近两年,融合了堆垛功能与自动化导向搬运的叉式移动机器人受到应用企业青睐。据中国移动机器人(AGV/AMR)产业联盟数据、新战略移动机器人产业研究所统计,2021年中国叉式移动机器人(含视觉导航)销量达8000台,同
- PiscTrace以YOLOv12为例定义兴趣区域提高识视图别效率
那雨倾城
PiscTraceOpenCV应用人工智能YOLO计算机视觉视觉检测pythonopencv
在PiscTrace中,裁剪功能允许开发者将图像分割为感兴趣区域(ROI),然后针对此区域进行特定的处理,最终将结果重新合成。这种方法不仅可以大幅提高计算效率,还能够在处理高分辨率图像时避免由于输入尺寸过大导致的小目标无法被识别的问题。2160*38401.裁剪与贴合的运算流程在传统的机器视觉模型中,由于输入尺寸的固定要求,一旦图像尺寸较大,缩放后的目标往往会变得模糊,导致小目标难以被精确识别。而
- 云原生边缘智能:构建分布式IoT设备的自主决策引擎
桂月二二
云原生分布式物联网
引言:突破云计算边界Tesla自动驾驶系统通过边缘节点每秒处理2300帧图像,决策延迟/dev/quality_valve"四、生产场景解决方案4.1典型行业应用场景4.2故障自愈流程#边缘节点健康检查脚本#!/bin/bashcheck_gpu_utilization(){util=$(nvidia-smi--query-gpu=utilization.gpu--format=csv,nohea
- C语言基础系列【20】内存管理
程序喵大人
C语言基础系列c语言开发语言c++后端面试
博主介绍:程序喵大人35-资深C/C++/Rust/Android/iOS客户端开发10年大厂工作经验嵌入式/人工智能/自动驾驶/音视频/游戏开发入门级选手《C++20高级编程》《C++23高级编程》等多本书籍著译者更多原创精品文章,首发gzh,见文末记得订阅专栏,以防走丢C++基础系列专栏C语言基础系列C++大佬养成攻略在C++编程中,内存管理是一个至关重要的概念。要深入理解内存管理,我们肯定要
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- 专业 英语
程序员爱德华
英语专业英语
文章目录一、计算机1.计算机基础(1)计算机组成原理(2)计算机网络(3)数据库(4)编译原理(5)离散数学2.软件开发(1)编程词汇(2)开发术语(3)Linux(4)软件3.就业领域(1)职场(2)芯片(3)自动驾驶(4)嵌入式硬件4.深度学习(1)论文(2)深度学习DL(3)计算机视觉CV(4)自然语言处理NLP(5)推荐系统(6)计算机图形学二、数学三、机械、材料四、医药五、英美计量单位一
- cv君独家视角 | AI内幕系列十四:【手机、相机防抖大揭秘】数字防抖、鸡头防抖、光学防抖、AI防抖等(附源码+长期更新)
cv君
原创项目级实战项目cv君独家视角AI内幕系列深度学习与计算机视觉精品人工智能aiisp科技python
目录摘要主要防抖技术手机防抖对比某拇指相机技术分析:1.基础介绍2.功能需求2.1功能背景2.2技术背景与技术选型2.3技术方案2.4可行性落地链路2.5竞品调研与市场分析2.6防抖主客观评价源码实现运动防抖步骤:代码实现性能优化与改进代码改进进一步改进与应用深度学习方法示例实时处理与应用示例运动摄影无人机航拍摄像头防抖设备计算资源需求复杂场景处理参数调整和优化实时处理需求误差累积并行和分布式处理
- Agent 框架与应用
power-辰南
企业级AI项目实战人工智能大模型aiagent
1.1初识Agent:智能体的核心能力AIAgent是一种基于大模型的自主任务执行系统,能够通过感知、决策、规划和执行实现复杂目标的闭环达成。其核心能力可拆解为以下四部分:1.1.1感知能力(Perception)Agent通过多模态输入接口获取环境信息:•数据采集:集成传感器(如自动驾驶的激光雷达)、API(如天气数据接口)、文本/语音交互系统等;•多模态解析:支持文本、图像、语音的联合处理(如
- 车载SerDes芯片的重要性:自动驾驶与智能座舱的神经网络
空间机器人
Serdes知识合集自动驾驶神经网络人工智能
车载SerDes芯片的重要性:自动驾驶与智能座舱的神经网络在智能汽车时代,数据就是“燃料”,而SerDes芯片(串行器/解串器)就是让这些数据以光速奔跑的“血管”。随着自动驾驶(ADAS/ADS)和智能座舱的发展,摄像头、雷达、LiDAR及高清显示屏的数量激增,数据量呈指数级增长。如何高效、低延迟、低误码率地传输这些数据,成为决定自动驾驶安全性和座舱体验的关键问题。这时候,高性能车载SerDes芯
- 基于深度学习的视频修复
SEU-WYL
深度学习dnn深度学习音视频人工智能dnn
基于深度学习的视频修复是一种利用深度学习技术对视频进行处理和优化,以修复视频中的损坏部分、提升视频质量、去除噪声和增强视觉效果的方法。这种技术在电影修复、视频编辑、监控视频增强、自动驾驶和虚拟现实等多个领域具有广泛应用。以下是关于这一领域的系统介绍:1.任务和目标视频修复的主要任务和目标包括:去噪声:去除视频中的噪声,提升视频的视觉质量。去模糊:减少或消除视频中的模糊区域,使视频更清晰。去伪影:消
- 镜像世界架构揭秘:全球领先的视频孪生与三维重构技术
云栖道人
重构人工智能
在数字孪生技术的迅猛发展下,镜像世界浙江科技有限公司凭借其全球领先的视频孪生和三维重构技术,成为行业的破局者和新兴黑马。本文将深入解析其核心技术架构,探讨其如何通过技术创新推动智慧城市、自动驾驶、安防监控等多个领域的应用落地。一、镜像世界的技术架构概览镜像世界的技术架构围绕高效的数据采集、智能数据处理、三维建模与融合、实时交互及系统管理五大核心模块构建,形成完整的视频孪生技术体系。1.数据采集与输
- 清华团队发布多模态“神探”Migician:24.94%性能碾压,解锁多图定位的无限可能—— 安防、自动驾驶、医疗影像的AI“鹰眼”革命
花生糖@
AIGC学习资料库人工智能自动驾驶机器学习
引言:当AI学会“跨图追凶”2025年,安防监控摄像头每天产生3.5万亿帧画面,自动驾驶汽车每秒处理20路传感器图像,医疗影像科医生年均分析50万张CT片——多图像定位能力已成为AI落地的命门。清华大学联合北交大、华中科大发布的Migician模型,凭借24.94%的性能碾压优势,让AI首次实现“跨图像精准狙击”。这个突破性工具,正在重新定义从安防到医疗的20+行业规则。一、技术深析:Migici
- 驱动 AI 边缘计算新时代!高性能 i.MX 95 应用平台引领未来
WPG大大通
NXP产线ATU伊布小編(一部)人工智能边缘计算大大通方案ai汽车工业
智慧浪潮崛起:AI与边缘计算的时代正悄然深植于我们的日常生活之中,无论是火热的ChatGPT与DeepSeek语言模型,亦或是Meta智能眼镜,AI技术已经无形地影响着我们的生活。这股变革浪潮并未停歇,而是进一步催生了更高效、更贴近现实需求的技术演进。然而,随着AI应用场景的拓展,传统云计算在实时性、隐私保护与带宽等方面逐渐面临瓶颈。特别是在自动驾驶、智慧医疗、工业自动化等高精度应用中,毫秒级的延
- 目标检测YOLO实战应用案例100讲-TDI线阵相机
林聪木
数码相机计算机视觉人工智能
目录知识储备图像基础知识分辨率单位及换算算法原理一、TDI基本原理二、信噪比提升机制三、时间同步机制四、TDIvs传统线扫描技术五、TDI的技术挑战六、最新的TDI技术发展知识储备图像基础知识首先什么是机器视觉?计算机视觉就是让计算机去理解获取数字图像与视频中的信息。最终实现一个与人类视觉系统实现相同功能的自动化系统。什么是机器视觉中的图像的前置知识——颜色模型?最为常用的颜色模型,分别是RGB颜
- OSG开发笔记(三十二):深入理解相机视口、制作支持与主视图同步变换旋转的相机HUD
长沙红胖子Qt(技术Q群4597637)
Qt开发OSG三维开发QtOSG三维开发HUD相机前景HUD旋转坐标
若该文为原创文章,未经允许不得转载本文章博客地址:https://blog.csdn.net/qq21497936/article/details/143852695各位读者,知识无穷而人力有穷,要么改需求,要么找专业人士,要么自己研究长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更
- 图像采集卡和线阵相机
沐细雨如春风
工程项目总结
一、起语最近接领导任务研究线阵相机和图像采集卡的相关配合任务,经过两天的资料与硬件学习,有一些收获,趁热打铁记录一下。二、硬件概述首先接触到两个不太熟悉的硬件:线阵相机和图像采集卡,平时做项目都是用面阵相机,这两个设备较少接触,接触下来发现简单类比一下,相机就像电视机,采集卡就像是遥控器,没有遥控器我们也可以看电视,且电视功能不受影响(因为电视自带各种基本控制按钮),但是如果有了遥控器我们就不需要
- 云原生边缘计算:重塑分布式智能的时空边界
桂月二二
云原生边缘计算分布式
引言:算力向数据源头迁移的革命特斯拉自动驾驶系统每小时产生20TB边缘数据,时延要求低于50ms。中国移动5G边缘云实现ARPU值提升38%,华为云IEF平台将工业质检响应速度提升至15ms以内。ABIResearch预测2026年边缘AI芯片市场规模达520亿美元,KubeEdge管理边缘节点数突破千万级,单节点资源开销仅为K8s的1/8。一、边缘计算架构范式演进1.1技术架构对比矩阵特征维度中
- blender 渲染obj
AI算法网奇
3d渲染python数码相机开发语言
blender渲染obj但是渲染没有结果importbpydefsetup_scene(camera_position=(0,0,5),look_at=(0,0,0),light_position=(5,5,5)):"""设置相机和光源"""#创建相机bpy.ops.object.camera_add(location=camera_position)camera=bpy.context.obje
- 双目立体视觉(6.1)测距
2501_90596733
双目立体视觉计算机视觉人工智能opencv
在计算机视觉领域,双目相机测距是一项关键技术,它通过模拟人类双眼的视觉机制,利用两个相机从不同角度拍摄同一场景,进而计算出物体的深度信息。一、双目测距的基本原理1.1视差图(DisparityMap)视差图是一种存储了单视图所有像素的视差值的二维图像。视差值是同一物体在左右两幅图像中的列坐标差,即通过比较左右两幅图像的对应像素差异来计算物体的深度信息。视差图是以图像对中任一幅图像为基准生成的,其大
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号