- Java大厂面试实录:谢飞机的电商场景技术问答(Spring Cloud、MyBatis、Redis、Kafka、AI等)
Java大厂面试实录:谢飞机的电商场景技术问答(SpringCloud、MyBatis、Redis、Kafka、AI等)本文模拟知名互联网大厂Java后端岗位面试流程,以电商业务为主线,由严肃面试官与“水货”程序员谢飞机展开有趣的对话,涵盖SpringCloud、MyBatis、Redis、Kafka、SpringSecurity、AI等热门技术栈,并附详细解析,助力求职者备战大厂面试。故事设定谢
- Java大厂面试故事:谢飞机的互联网音视频场景技术面试全纪录(Spring Boot、MyBatis、Kafka、Redis、AI等)
来旺
Java场景面试宝典JavaSpringBootMyBatisKafkaRedis微服务AI
Java大厂面试故事:谢飞机的互联网音视频场景技术面试全纪录(SpringBoot、MyBatis、Kafka、Redis、AI等)互联网大厂技术面试不仅考察技术深度,更注重业务场景与系统设计能力。本篇以严肃面试官与“水货”程序员谢飞机的对话,带你体验音视频业务场景下的Java面试全过程,涵盖主流技术栈,并附详细答案解析,助你面试无忧。故事场景设定谢飞机是一名有趣但技术基础略显薄弱的程序员,这次应
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(Advanced RAG[1])基于历史对话重新生成Query?
985小水博一枚呀
AI大模型学习路线人工智能学习langchainRAG
【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])基于历史对话重新生成Query?【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])基于历史对话重新生成Query?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])基于历史对话重新生成Q
- AI Agent开发学习系列 - langchain之Chains的使用(7):用四种处理文档的预制链轻松实现文档对话
alex100
AIAgent学习人工智能langchainprompt语言模型python
在LangChain中,四种文档处理预制链(stuff、refine、mapreduce、mapre-rank)是实现文档问答、摘要等任务的常用高阶工具。它们的核心作用是:将长文档切分为块,分步处理,再整合结果,极大提升大模型处理长文档的能力。stuff直接拼接所有文档内容到prompt,一次性交给大模型处理。适合文档较短、token不超限的场景。refine递进式摘要。先对第一块文档生成初步答案
- Llama-Omni会说话的人工智能“语音到语音LLM” 利用低延迟、高质量语音转语音 AI 彻底改变对话方式(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程llama人工智能nvidiallm
介绍“单靠技术是不够的——技术与文科、人文学科的结合,才能产生让我们心花怒放的成果。”——史蒂夫·乔布斯近年来,人机交互领域发生了重大变化,尤其是随着ChatGPT、GPT-4等大型语言模型(LLM)的出现。虽然这些模型主要基于文本,但人们对语音交互的兴趣日益浓厚,以使人机对话更加无缝和自然。然而,实现语音交互而不受语音转文本处理中常见的延迟和错误的影响仍然是一个挑战。关键字:Llama-Omni
- 基于SSE+Worker+MarkdownIt 实现流式对话
小周同学:
vue.jsnodejs
1.SSE实现流式对话1.1什么是SSE?Server-SentEvents(SSE)是一种基于HTTP的服务器推送技术,允许服务器向客户端发送事件流。与WebSocket不同,SSE是单向的(只从服务器到客户端),专为数据流式传输设计,特别适合AI对话这类需要实时展示生成内容的场景。SSE的主要优势:基于标准HTTP,无需额外协议自动重连机制支持事件ID和自定义事件类型轻量级,实现简单1.2SS
- 穿越虚拟边界:VirtualBox NAT 网络探秘与技术解析
109702008
网络运维网络运维人工智能
摘要:本文通过用户与AI助手的真实技术对话,系统解析VirtualBox的NAT网络模式工作原理,揭示主机与虚拟机通信受阻的根本原因,并提供三种实用解决方案。同时深入剖析网络地址转换(NAT)技术的核心机制与时代意义。一、问题起源:为何主机无法Ping通NAT模式的虚拟机?用户在使用VirtualBox时发现:虚拟机网络配置为NAT(网络地址转换)模式虚拟机内ipa显示IP地址为10.0.2.15
- NLP_知识图谱_大模型——个人学习记录
macken9999
自然语言处理知识图谱大模型自然语言处理知识图谱学习
1.自然语言处理、知识图谱、对话系统三大技术研究与应用https://github.com/lihanghang/NLP-Knowledge-Graph深度学习-自然语言处理(NLP)-知识图谱:知识图谱构建流程【本体构建、知识抽取(实体抽取、关系抽取、属性抽取)、知识表示、知识融合、知识存储】-元気森林-博客园https://www.cnblogs.com/-402/p/16529422.htm
- 大型语言模型(LLM, Large Language Models)基模和 Chat 模型之间的区别
一、概述最近看大模型相关的知识,有看到大模型都有基础模型(base)和对话模型(chat),不太清楚什么时候用到基础模型,什么时候用到对话模型,故有此文。通过了解,最简单的概述就是基于基础模型会训练出一个对话(Chat)模型,对话模型主要用于对话场景,基础模型主要做文本生成,没有上下文对话的能力。在模型命名上也能看出来区别,例如:Qwen-72B和Qwen-72B-ChatChatGLM3-6B-
- C#高级技巧:打造风格化Windows窗体应用
一曲歌长安
本文还有配套的精品资源,点击获取简介:WindowsForms是C#开发桌面应用的工具,可实现个性化和功能丰富的用户界面。本项目重点介绍了如何通过C#和.NET框架定制WinForms应用的外观和行为,包括自定义外观、主题、透明度、动画、状态管理、非模态对话框、拖放功能、自定义边缘和标题栏,以及扩展功能。通过掌握这些技术要点,开发者可以创建美观和交互性强的应用程序。1.自定义WinForms外观自
- LangChain框架 Prompts、Agents 应用
_pass_
大模型学习langchain
目录(Prompts)提示作用Prompts常见操作基础PromptTemplate使用Few-shot提示模板ChatPromptTemplate(对话提示模板)(Agents)代理作用Agents常见操作基础Agent使用自定义工具Agent高级应用示例带记忆的对话代理使用本地模型的代理结构化输出代理LangChain框架Loader、Vectorstores、Chain应用-CSDN博客另外
- 借助 Wisdom SSH AI 助手,轻松安装 CentOS 8 LNMP 环境
qinyia
sshcentosadb
打开WisdomSSH软件,在AI对话区输入“在CentOS8服务器安装LNMP环境”,AI助手会按以下步骤分析并执行安装:安装Nginx分析:CentOS8默认软件源可能没有Nginx,所以要先启用Nginx官方软件源,然后才能安装Nginx。指令:启用Nginx官方软件源:sudodnfinstall-yepel-release-安装Nginx:sudodnfinstall-ynginx分析:
- Unity Demo-3DFarm详解-其二
KhalilRuan
unity游戏引擎
我们接着一的内容来讲解这几个部分:角色与玩家互动物品与背包存档和进度管理用户界面系统角色与玩家互动角色与玩家互动系统是游戏中连接玩家输入与游戏世界的核心机制,它允许玩家通过点击、移动等操作与游戏中的各种对象(如NPC、物品、环境元素)进行交互,实现诸如对话、采集、使用物品、战斗等核心游戏玩法。交互逻辑实现Selectable组件(Selectable.cs)是所有可交互对象的基础,它定义了对象的交
- 人工智能-基础篇-28-模型上下文协议--MCP请求示例(JSON格式,客户端代码,服务端代码等示例)
weisian151
人工智能人工智能json网络
目前,MCP(ModelContextProtocol)协议并不是一个广泛标准化或公开开源的协议标准。不过,在某些AI工具链和LLM开发框架中,确实出现了以“MCP”命名的内部通信机制,尤其是在与语言模型代理(LLMAgent)和工具调用接口相关的系统中。假设场景:MCP是用于Agent与外部工具之间交互的协议。其核心目标是:1、标准化请求/响应格式2、支持多轮对话上下文3、支持工具调用(tool
- 从数据集视角看——大语言模型(LLMs)的训练、微调和推理
爱看烟花的码农
AIGCNLP语言模型人工智能自然语言处理
1.大语言模型训练的整体框架大语言模型的训练是一个复杂的过程,涉及数据准备、模型架构、优化策略和推理部署。以下是整体框架的详细分解:1.1训练阶段预训练:在海量文本数据上学习通用语言表示,类似于“学习语言的百科全书”。微调:针对特定任务调整模型参数,类似于“针对考试复习重点内容”。指令微调:在对话或指令数据集上优化,使模型更适合交互式任务。推理:使用训练好的模型进行预测或生成。1.2核心组件数据集
- 怎么查看2进制文件
贫僧法号止尘
可以使用记事本或其他文本编辑器打开2进制文件。在记事本中,选择“文件”菜单,然后选择“打开”。在打开文件对话框中,选择“文件类型”下拉菜单并选择“所有文件”。这样,你就可以看到所有文件,包括2进制文件。然后,选择要查看的2进制文件,单击“打开”按钮即可。注意,记事本不能正确显示2进制文件的内容。它会将2进制数据显示为乱码字符。因此,建议使用专门的二进制查看器来查看2进制文件。这些工具可以正确显示2
- AI技术正在深度重构全球产业格局,其影响已超越工具属性,演变为推动行业变革的核心引擎。
一、AI如何重塑AI的工作与行业(AI助手领域)能力升级理解与生成:基于LLM(大语言模型),AI能处理开放式问题、撰写报告、翻译代码,替代部分人类知识工作。个性化交互:通过用户历史对话分析,提供定制化建议(如学习计划、投资策略)。多模态扩展:结合图像/语音识别(如GPT-4V),实现图文分析、医学影像解读等跨模态任务。行业变革客服行业:AI客服处理70%+常规咨询(如阿里小蜜),人力转向复杂问题
- 华为手机手机与计算机传输,如何将华为手机的视频传到华为的电脑上?手机与电脑数据互传操作步骤...
人人保
华为手机手机与计算机传输
手机与电脑数据互传操作bai步骤如下:1、手机du通过原装USB数据线与电脑相连,待zhi电脑自行dao安装驱动,并确认驱动安装成功,如下图所示:注:如驱动未安装成功,可通过安装HiSuite软件进行辅助驱动安装或者通过选择端口模式中的帮助进行电脑驱动安装。(1)在手机端弹出的对话框选择“是,访问数据”(2)在手机下拉菜单中USB连接方式中选择设备文件管理(MTP)注:关于设备文件管理(MTP)和
- 从零开始:构建支持上下文窗口的AI原生应用实战指南
AI天才研究院
AI人工智能与大数据AI-nativeai
从零开始:构建支持上下文窗口的AI原生应用实战指南关键词:大语言模型(LLM)、上下文窗口、AI原生应用、token管理、对话状态保持、向量检索、记忆压缩摘要:本文从AI原生应用的核心需求出发,系统讲解支持上下文窗口的应用构建全流程。通过解析上下文窗口的技术本质、关键挑战及解决方案,结合Python代码实战和真实场景案例,帮助开发者掌握从需求分析到落地部署的完整方法。内容涵盖上下文窗口管理策略、t
- JavaScript中的系统对话框:alert、confirm、prompt
JavaScript中的系统对话框:alert、confirm、prompt在Web开发的世界里,JavaScript始终扮演着“桥梁”的角色——它连接用户与网页,让静态的页面焕发活力。而在这座桥梁上,系统对话框(SystemDialogs)是最基础却最实用的工具之一。它们像是一位贴心的助手,在用户需要确认、提示或输入时,悄然出现,又在任务完成后无声退场。今天,我们就来聊聊JavaScript中三
- 实操 SpringBoot+MCP!
清风孤客
springboot后端java人工智能
引言随着人工智能的飞速发展,大语言模型(LLM)正在革命性地重塑用户与软件的交互范式。想象一下这样的场景:用户无需钻研复杂的API文档或者在繁琐的表单间来回切换,只需通过自然语言直接与系统对话——“帮我查找所有2023年出版的图书”、“创建一个新用户叫张三,邮箱是
[email protected]”。这种直观、流畅的交互方式不仅能显著降低新用户的学习曲线,更能大幅削减B端系统的培训成本和实施
- Char Studio 使用入门:高效构建企业级对话系统的实战指南
charles666666
人工智能产品经理语言模型自然语言处理架构
数字化浪潮推动下,企业与用户的交互模式正经历深刻变革,对话系统作为核心交互手段,其重要性日益凸显。然而,众多企业在构建对话系统时,却深陷诸多困境,难以自拔。一、开篇痛点场景:企业对话系统开发的典型困境企业在自行开发对话系统时,往往面临预算超支、周期漫长以及维护成本居高不下等问题。开发团队需要投入大量时间和精力进行底层技术架构的搭建,例如自然语言处理算法的研究、对话逻辑的设计等,这不仅消耗了大量的人
- 从零构建智能ai语音助手:ESP32s3+Python+大语言模型实战指南
从零构建智能ai语音助手:ESP32s3+Python+大语言模型实战指南一、项目概述大家好!今天给大家带来一个干货满满的实战项目——基于ESP32S3硬件和Python后端的智能语音助手系统。这个项目将物联网技术与AI技术完美结合,打造一个可以实时对话、意图识别的智能语音交互系统。相比传统的离线语音系统只能识别固定命令词,我们这套系统可以:实现自然语言理解,支持多种表达方式无需预设固定命令词,更
- 李彦宏的求真务实:AI领域的生死局,信心从何而来?
文|大力财经据自媒体『划重点』独家报道,李彦宏在季度高管会上,来了一场《求真务实》的内部演讲,还把原文向全员公开,这实在可罕。“不是所有的game百度都能去玩、都能赢,所以要搞清楚该干什么、不该干什么。”李彦宏这话,算是把“求真务实”给点透了。他还直接开炮:“百度为什么打不赢仗?为什么起大早赶晚集?因为我们不聚焦。”他要求百度高管得敢于批评和自我批评,要开诚布公,知道自己几斤几两,还得能指出队友的
- ollama v0.9.6版本发布详解:修复启动屏幕样式及新增工具名称参数支持
福大大架构师每日一题
文心一言vschatgptollama
作为近年来备受瞩目的开源对话式人工智能框架之一,ollama持续更新优化其产品,致力于为开发者带来更稳定、高效的使用体验。2025年7月8日,ollama发布了v0.9.6版本,这一版本在用户界面和API的可用性方面做出了重要改进,进一步增强了开发和集成的便捷性。本文将对ollamav0.9.6版本的更新内容进行全面解析,详细介绍新特性、修复的具体问题、应用示例及最佳实践,帮助开发者快速掌握和应用
- 《论三生原理》如何与量子计算对话?
葫三生
三生学派量子计算
AI辅助创作:《论三生原理》与量子计算的对话体现为哲学思想、数学工具与物理机制的三重耦合,其核心关联如下:一、哲学基础的重构性映射动态生成论与量子叠加的对应将《道德经》“三生万物”的生成逻辑映射为量子态演化模型:“道生一”对应量子真空涨落(虚粒子对涌现),“二生三”类比纠缠光子对的自旋关联态,“三生万物”诠释量子比特叠加态的指数级演化空间。量子纠缠中“整体性优先个体”的特性与三生原理“关系先
- iOS证书过期处理过程中,遇到双击后缀cer文件无法导入钥匙串的问题
piggy514
ios
不知什么原因,以前每年证书处理都没遇到过:双击下载到的.cer文件,钥匙串程序提示:出现错误。无法导入“iPhoneDistribution:...(...)”。错误:-25294最后用蛮不讲理的方式解决:双击.cer文件时先弹出一个对话框,有个下拉选项默认值是“本地项目”,改为“系统”后再导入即可,不过会提示要密码(也就是你登录Mac的账号的密码)打包时也可能会提示要密码
- AI产品经理技术篇:从传统AI到生成式AI,解密大模型的核心概念
让我看看好学吗
人工智能产品经理学习深度学习自然语言处理
在人工智能技术飞速发展的今天,AI产品经理不仅需要理解业务逻辑,还需深入技术底层,把握从传统AI到生成式AI的演进脉络。传统AI以分类、预测和规则驱动为核心,而生成式AI则颠覆了这一范式,通过大模型实现内容创作、对话生成等创造性任务。这种转变背后,是参数规模、模型架构和训练方式的根本性革新。作为AI产品经理,理解大模型的核心概念至关重要。从“参数”的意义到“Token”的向量化,从Transfor
- !LangChain自定义代理开发深度解析(44)
Android 小码蜂
测试专栏langchainmicrosoft.net
LangChain自定义代理开发深度解析一、LangChain代理基础架构1.1代理核心概念LangChain中的代理(Agent)是一种能够根据工具调用和对话历史自主决策的智能体。它通过以下核心机制实现智能交互:工具调用:代理可调用外部工具(如搜索引擎、计算器等)获取实时信息对话历史管理:维护多轮对话上下文,支持状态追踪决策逻辑:基于LLM生成决策,判断是否需要调用工具或直接回答1.2代理核心组
- 深度剖析:向70岁老系统植入通信芯片——MCP注入构建未来级分布式通信
Loving_enjoy
计算机学科论文创新点迁移学习人工智能机器学习深度学习
>如何让老旧系统重获新生?协议注入技术是关键。##一、当遗留系统遇上分布式未来:一场艰难的对话想象一下:你负责维护一套诞生于20年前的单体式银行核心系统,它像一位固执的70岁老人,使用着陈旧的TCP自定义协议。这时业务部门要求实现与云原生风险分析引擎的实时交互。直接改造?风险巨大;推倒重来?成本天文数字。这就是**分布式通信协议断层**带来的典型困境。###传统桥接方案痛点1.**协议转换地狱**
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号