最长上升(不下降)子序列(详细,转)

LIS(Longest Increasing Subsequence)最长上升(不下降)子序列,有两种算法复杂度为O(n*logn)和O(n^2)。在上述算法中,若使用朴素的顺序查找在 D1..Dlen查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来算法相比没有任何 进步。但是由于D的特点(2),在D中查找时,可以使用二分查找高效地完成,则整个算法时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意 的是,D在算法结束后记录的并不是一个符合题意的最长上升子序列!算法还可以扩展到整个最长子序列系列问题。
 有两种算法复杂度为O(n*logn)和O(n^2)
O(n^2)算法分析如下
  (a[1]...a[n] 存的都是输入的数)
  1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列;
  2、若从a[n-1]开始查找,则存在下面的两种可能性:
  (1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n].
  (2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。
  3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的:
  在a[t+1],a[t+2],...a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。
  4、为算法上的需要,定义一个数组:
  d:array [1..n,1..3] of integer;
  d[t,1]表示a[t]
  d[t,2]表示从i位置到达n的最长不下降子序列的长度
  d[t,3]表示从i位置开始最长不下降子序列的下一个位置
最长不下降子序列的O(n*logn)算法
   先回顾经典的O(n^2)的动态规划算法,设A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设 F[t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。
  现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足
  (1)x < y < t (2)A[x] < A[y] < A[t] (3)F[x] = F[y]
  此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?
  很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] < A[z] < a[y],则与选择A[y]相比,将会得到更长的上升子序列。
  再根据条件(3),我们会得到一个启示:根据F[]的值进行分类。对于F[]的每一个取值k,我们只需要保留满足F[t] = k的所有A[t]中的最小值。设D[k]记录这个值,即D[k] = min{A[t]} (F[t] = k)。
  注意到D[]的两个特点:
  (1) D[k]的值是在整个计算过程中是单调不上升的。
  (2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。
   利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断A[t]与D[len]。若 A[t] > D[len],则将A[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = A[t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < A[t]。令k = j + 1,则有D[j] < A[t] <= D[k],将A[t]接在D[j]后将得到一个更长的上升子序列,同时更新D[k] = A[t]。最后,len即为所要求的最长上升子序列的长度。
  在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有 O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点 (2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[] 在算法结束后记录的并不是一个符合题意的最长上升子序列!
  这个算法还可以扩展到整个最长子序列系列问题,整个算法的难点在于二分查找的设计,需要非常小心注意。

 

介绍二:

最长上升子序列LIS算法实现  最长上升子序列问题是各类信息学竞赛中的常见题型,也常常用来做介绍动态规划算法的引例,笔者接下来将会对POJ上出现过的这类题目做一个总结,并介绍解决LIS问题的两个常用算法(n^2)和(nlogn).

问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7....an,求它的一个子序列(设为s1,s2,...sn),使得这个子序列 满足这样的性质,s1<s2<s3<...<sn并且这个子序列的长度最长。输出这个最长的长度。(为了简化该类问题,我们将诸 如最长下降子序列及最长不上升子序列等问题都看成同一个问题,其实仔细思考就会发现,这其实只是<符号定义上的问题,并不影响问题的实质)

例如有一个序列:1 7 3 5 9 4 8,它的最长上升子序列就是 1 3 4 8 长度为4.

算法1(n^2):我们依次遍历整个序列,每一次求出从第一个数到当前这个数的最长上升子序列,直至遍历到最后一个数字为止,然后再取dp数组里最 大的那个即为整个序列的最长上升子序列。我们用dp[i]来存放序列1-i的最长上升子序列的长度,那么dp[i]=max(dp[j])+1, (j∈[1, i-1]); 显然dp[1]=1,我们从i=2开始遍历后面的元素即可。

下面是模板:

 1 //最长上升子序列(n^2)模板

 2 //入口参数:1.数组名称 2.数组长度(注意从1号位置开始)

 3 template<class T>

 4 int LIS(T a[],int n)

 5 {

 6 int i,j;

 7 int ans=1;

 8 int m=0;

 9 int *dp=new int[n+1];

10 dp[1]=1;

11 for(i=2;i<=n;i++)

12 {

13 m=0;

14 for(j=1;j<i;j++)

15 {

16 if(dp[j]>m&&a[j]<a[i])

17 m=dp[j];

18 }

19 dp[i]=m+1;

20 if(dp[i]>ans)

21 ans=dp[i];

22 }

23 return ans;

24 }
View Code

 

算法2(nlogn):维护一个一维数组c,并且这个数组是动态扩展的,初始大小为1,c[i]表示最长上升子序列长度是i的所有子串中末尾最小的 那个数,根据这个数字,我们可以比较知道,只要当前考察的这个数比c[i]大,那么当前这个数一定能通过c[i]构成一个长度为i+1的上升子序列。当然 我们希望在C数组中找一个尽量靠后的数字,这样我们得到的上升子串的长度最长,查找的时候使用二分搜索,这样时间复杂度便下降了。

模板如下:

 1 //最长上升子序列nlogn模板

 2 //入口参数:数组名+数组长度,类型不限,结构体类型可以通过重载运算符实现

 3 //数组下标从1号开始。

 4 /**//////////////////////////BEGIN_TEMPLATE_BY_ABILITYTAO_ACM////////////////////////////

 5 template<class T>

 6 int bsearch(T c[],int n,T a)

 7 {

 8 int l=1, r=n;

 9 while(l<=r)

10 {

11 int mid = (l+r)/2;

12 if( a > c[mid] && a <= c[mid+1] ) return mid+1; // >&&<= 换为: >= && <

13 else if( a < c[mid] ) r = mid-1;

14 else l = mid+1;

15 }

16 }

17 template<class T>

18 int LIS(T a[], int n)

19 {

20 int i, j, size = 1;

21 T *c=new T[n+1];

22 int *dp=new int[n+1];

23 c[1] = a[1]; dp[1] = 1;

24 for(i=2;i<=n;++i)

25 {

26 if( a[i] <= c[1] ) j = 1;// <= 换为: <

27 else if( a[i] >c[size] )

28 j=++size; // > 换为: >=

29 else

30 j = bsearch(c, size, a[i]);

31 c[j] = a[i]; dp[i] = j;

32 }

33 return size;

34 }
View Code

 

你可能感兴趣的:(序列)