- NLP高频面试题(四)——BN和LN的区别与联系,为什么attention要用LN
Chaos_Wang_
NLP常见面试题自然语言处理人工智能
在深度学习模型中,Normalization是一种极为重要的技巧,BatchNormalization(BN)和LayerNormalization(LN)是其中最为常用的两种方法。然而,二者在实际应用中有着明显的区别与联系,尤其在Transformer的Attention机制中,LN有着独特的优势。一、BN与LN的核心区别与联系1.BatchNormalization(BN)BN的思想源于一个叫
- pytorch的使用:卷积神经网络模块
樱花的浪漫
pytorchcnnpytorch深度学习计算机视觉
1.读取数据分别构建训练集和测试集(验证集)DataLoader来迭代取数据使用transforms将数据转换为tensor格式#定义超参数input_size=28#图像的总尺寸28*28num_classes=10#标签的种类数num_epochs=3#训练的总循环周期batch_size=64#一个撮(批次)的大小,64张图片#训练集train_dataset=datasets.MNIST(
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 21-梯度累积原理与实现
机器人图像处理
深度学习算法与模型人工智能深度学习YOLO
一、基本概念在深度学习训练的时候,数据的batchsize大小受到GPU内存限制,batchsize大小会影响模型最终的准确性和训练过程的性能。在GPU内存不变的情况下,模型越来越大,那么这就意味着数据的batchsize智能缩小,这个时候,梯度累积(GradientAccumulation)可以作为一种简单的解决方案来解决这个问题。二、Batchsize的作用训练数据的Batchsize大小对训
- max_samples,batch_size,gradient_accumulation_steps这三个分别的联系和区别
背太阳的牧羊人
模型微调batch机器学习人工智能
这三个参数都是控制训练数据如何被处理的,它们的作用和区别如下:1.max_samples(最大样本数)定义:限制每个数据集最多使用多少条数据。作用:控制总共参与训练的数据量,减少max_samples可以加快训练速度。你的代码示例:max_samples=300#每个数据集最多用300条样本解释:假设你的dataset里包含:identity数据集有10,000条数据alpaca_en_demo数
- scaled_dot_product_attention实现逻辑
凤梧长宜放眼量
人工智能深度学习计算机视觉
torch.nn.functional.scaled_dot_product_attention(query,key,value,attn_mask=None,dropout_p=0.0,is_causal=False,scale=None,enable_gqa=False)->Tensor:参数:query(Tensor)–Querytensor;shape(batch_size,...,hea
- 【eNSP实战】基本ACL实现网络安全
敲键盘的Q
网络
拓扑图要求:PC3不允许访问其他PC和Server1PC2允许访问Server1服务器,不允许其他PC访问各设备IP配置如图所示,这里不做展示AR1接口vlan配置vlanbatch102030#interfaceVlanif10ipaddress192.168.1.254255.255.255.0#interfaceVlanif20ipaddress192.168.2.254255.255.25
- 图神经网络学习笔记—高级小批量处理(专题十四)
AI专题精讲
图神经网络入门到精通人工智能
小批量(mini-batch)的创建对于让深度学习模型的训练扩展到海量数据至关重要。与逐条处理样本不同,小批量将一组样本组合成一个统一的表示形式,从而可以高效地并行处理。在图像或语言领域,这一过程通常通过将每个样本缩放或填充为相同大小的形状来实现,然后将样本在一个额外的维度中分组。该维度的长度等于小批量中分组的样本数量,通常称为batch_size。由于图是能够容纳任意数量节点或边的最通用的数据结
- Batch Normalization理解
zhimengxiang
图像处理人工智能图像处理
BatchNormalization理解BatchNormalization:批归一化我们在图像预处理过程中通常会对图像进行标准化处理,这样能够加速网络的收敛,如下图所示,对于Conv1来说输入的就是满足某一分布的特征矩阵,但对于Conv2而言输入的featuremap就不一定满足某一分布规律了(注意这里所说满足某一分布规律并不是指某一个featuremap的数据要满足分布规律,理论上是指整个训练
- mybatis plus
架构师成长进阶空间
Javajava
//根据ID查询TselectById(Serializableid);//根据entity条件,查询一条记录TselectOne(@Param(Constants.WRAPPER)WrapperqueryWrapper);//查询(根据ID批量查询)ListselectBatchIds(@Param(Constants.COLLECTION)CollectionidList);//根据entit
- Epoch 和 Batch Size的设计 + 模型的早停策略(基于上篇)
一只小铁柱
batch开发语言
一.epoch和batchsize的设计epoch和batchsize是训练神经网络时的两个关键超参数,它们的设计会直接影响模型的训练速度、收敛性和最终性能。1.Epoch的设计epoch表示整个数据集被模型完整遍历一次。设计epoch时需要考虑以下因素:1.1数据集大小小数据集(例如几MB的文本数据):模型容易过拟合,因此epoch不宜过大(例如10-30)。可以使用早停(earlystoppi
- Unity3D 批处理与Draw Call减少(Batching & Reducing Draw Calls)
Thomas_YXQ
Unity3DUnity游戏开发优化性能优化
前言在Unity3D中,批处理(Batching)是优化渲染性能的核心手段,主要通过减少DrawCall数量来降低CPU与GPU之间的通信开销。以下是详细的优化策略与实践方法:对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交流一下开发经验呀!一、DrawCall的基本概念DrawCall是CPU向GPU发起的一次渲染指令,每次调用都会触发GPU绘制一个物体。DrawCall过多会导致C
- 一个基于LSTM的字符级文本生成模型的训练+使用(pytorch)
一只小铁柱
lstmpytorch人工智能
一、代码实现1.配置文件config.pyimporttorch#设备配置DEVICE=torch.device('cuda'iftorch.cuda.is_available()else'cpu')#超参数和配置SEQ_LENGTH=100#输入序列长度BATCH_SIZE=64#批大小EMBEDDING_DIM=256#嵌入层维度HIDDEN_SIZE=512#LSTM隐藏层大小NUM_LAY
- Native 崩溃解析工具
JT-999
Androidpython
NDKToolsLibrary一个Python工具库,用于简化AndroidNDK崩溃分析。该库通过封装NDK工具来简化操作,支持解析.dmp文件和logcat崩溃日志,并支持灵活配置参数。支持多平台(Linux、Windows、macOS),并提供Shell和Batch脚本便于使用。功能特性解析.dmp文件:使用ndk-stack工具解析崩溃堆栈解析原生崩溃日志:从logcat输出中提取原生崩溃
- 用友U8销售出库单及序列号查询语句
zikn_92
用友U8SQL语句数据库语句SQLSERVER数据库
SELECTa.cCodeAS销售出库单单号,a.dDateAS日期,a.cMakerAS制单人,a.cHandlerAS审核人,a.dVeriDateAS审核日期,b.cInvCodeAS存货编码,--b.cInvNameAS存货名称,--b.cInvStdAS规格型号,b.iQuantityAS数量,b.cBatchAS批号,c.cInvSNAS序列号FROMrdrecord32a--销售出库
- 用友 U8出入库查询SQL 连接UNION ALL
zikn_92
SQLSERVER用友U8SQL语句数据库语句数据库
--销售出库单查询SELECT'销售出库单'AS单据类型,a.cCodeAS单号,a.dDateAS日期,a.cMakerAS制单人,a.cHandlerAS审核人,a.dVeriDateAS审核日期,b.cInvCodeAS存货编码,b.iQuantityAS数量,b.cBatchAS批号,c.cInvSNAS序列号FROMrdrecord32aJOINrdrecords32bONa.ID=b.
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- 深度学习PyTorch之数据加载DataLoader
@Mr_LiuYang
计算机视觉基础深度学习pytorch人工智能
深度学习pytorch之简单方法自定义9类卷积即插即用文章目录数据加载基础架构1、Dataset类详解2、DataLoader核心参数解析3、数据增强数据加载基础架构核心类关系图torch.utils.data├──Dataset(抽象基类)├──DataLoader(数据加载器)├──Sampler(采样策略)├──BatchSampler(批量采样)└──IterableDataset(流式数
- 101.华为企业组网实例:VRRP+MSTP典型组网配置
亦良Cool
华为数通0基础到进阶合集华为网络
VRRP+MSTP典型组网配置VRRP是一种容错协议,它保证当主机的下一跳路由器出现故障时,由另一台路由器来代替出现故障的路由器进行工作,从而保持网络通信的连续性和可靠性。MSTP:多生成树协议,通过生成多个生成树,来解决以太网环路问题。实验拓扑一、VLAN配置SW3配置sysw3uninenvlanbatch10203040interfacee0/0/3portlink-typeaccesspo
- crewai框架出现SSLError
Otto_1027
跑项目实况crewai智能体协作多智能体协作人工智能
使用crewai框架(0.102.0)的时候,控制台突然会出现很多报错信息,但是并不影响程序的实际输出ERROR:opentelemetry.sdk.trace.export:ExceptionwhileexportingSpanbatch.Traceback(mostrecentcalllast):File"G:\ProgramData\anaconda3\envs\crewai_1002\li
- WHALE: TOWARDS GENERALIZABLE AND SCALABLE WORLD Models for Embodied Decision-making 翻译
Doc2X
经典论文翻译人工智能
Doc2X|PDF到Markdown一步搞定只需几秒,Doc2X即可将PDF转换为Markdown,支持批量处理和深度翻译功能。Doc2X|One-StepPDFtoMarkdownConversionInjustseconds,Doc2XconvertsPDFstoMarkdown,withsupportforbatchprocessingandadvancedtranslationfeatur
- Jetson系列: tensorrt-python推理yolov5(一)
weixin_55083979
jetson系列YOLOpytorch深度学习
目录一.onnx模型导出二.TensorRT模型本地序列化三.算法整体Pipline架构四.算法整体Pipline实现一.onnx模型导出在使用tensorrt进行加速之前需要将自己的torch模型转为onnx格式的,这个操作很基础就不赘述了,自己根据自己的任务、部署设备选择合适的batch/infersize/opsetyolov5官方导出onnx脚本Example:```pythonfromp
- Mybatis-Plus 批量插入速度慢的问题优化
自在如风。
mybatismybatis-plusmysqlsqljava
MyBatis-Plus的batchSave接口:实现分页批量插入在实际开发中,批量插入数据是一个常见需求,尤其当数据量较大时,直接使用循环插入效率低下,而MyBatis-Plus提供了强大的批量操作支持。本文将详细讲解如何通过配置和代码实现batchSave接口的分页批量插入功能,优化性能并避免内存溢出。1.背景介绍MyBatis-Plus的BaseMapper默认提供了insert方法,但它只
- Java项目中ES作为时序库
大丈夫在世当日食一鲲
javaelasticsearch开发语言
一、ES作为时序库的核心优势高写入性能通过BulkAPI支持批量插入/更新,优化吞吐量,适合流式数据(如监控指标、IoT设备数据)的高频写入。使用Logstash作为数据管道时,可通过调整pipeline.workers和batch.size进一步提升并发处理能力。高效的查询与分析倒排索引:对文本字段(如标签)的分词处理,支持快速多条件匹配(如tagslike‘%tag1%’ANDtagslike
- Apache Flink详解:流处理与批处理的强大框架
微笑听雨。
大数据apacheflink大数据
ApacheFlink详解:流处理与批处理的强大框架ApacheFlink是一个开源的流处理框架,旨在处理大规模数据流。Flink能够处理实时流数据和批处理数据,具有高吞吐量、低延迟、容错等特性。以下是对Flink的详细介绍:核心概念流与批处理:流处理(StreamProcessing):持续不断地处理实时生成的数据流。批处理(BatchProcessing):处理已经收集好的静态数据集。Data
- 2021年7月初,深圳TPlink图像算法工程师面试题分享
niuyunpang
算法链表机器学习深度学习人工智能
问题一:Batch-norm作用和参数batchnorm的作用batchnorm对于输入数据做了零均值化和方差归一化过程,方便了下一层网络的训练过程,从而加速了网络的学习。不同batch的数据,由于加入了batchnorm,中间层的表现会更加稳定,输出值不会偏移太多。各层之间受之前层的影响降低,各层之间比较独立,有助于加速网络的学习。梯度爆炸和梯度消失现象也得到了一些缓解(我自己加上去的)。bat
- 手写BatchNorm与LayerNorm:从原理到实现
_Itachi__
自动驾驶人工智能计算机视觉python
手写BatchNorm与LayerNorm:从原理到实现大家好,今天我们将手写实现BatchNormalization(BatchNorm,批归一化)和LayerNormalization(LayerNorm,层归一化)。通过手写实现,我们可以更深入地理解这两种归一化技术的原理和细节。本文将从原理、代码实现以及对比分析等方面,带大家彻底搞懂BatchNorm和LayerNorm!1.BatchNo
- python valueerror函数使用_python – 具有张量流的语义分段 – 损失函数中的ValueError(稀疏 – softmax)...
创新工场
pythonvalueerror函数使用
我的输入图像数据暂时是750x750x3RGB图像.在通过网络运行后,我使用shape[batch_size,750,2]的logits进行损失计算.这是一个二进制分类–我这里有两个类,[0,1]在我的标签中(形状[batch_sizex750x750].这些进入损失函数,如下:defloss(logits,labels,num_classes):withtf.name_scope('lossmi
- Spring 源码硬核解析系列专题(扩展篇):Spring Batch 的恢复机制源码解析
yinlongfei_love
springbatchjava
在第九期中,我们深入探讨了SpringBatch的批处理流程,剖析了Job和Step的执行机制。在企业级应用中,批处理任务可能因异常(如数据库故障、网络中断)失败,如何从失败点恢复并继续执行,是SpringBatch的关键特性之一。本篇将聚焦SpringBatch的恢复机制,深入源码分析其实现原理,并补充相关图示。1.恢复机制的核心概念SpringBatch的恢复机制依赖以下组件:JobRepos
- PyTorch数据加载:实战入门
秋.
pytorch人工智能python数据加载
"好的数据加载是成功训练的第一步"一、为什么要用DataLoader?当我们刚开始学习深度学习时,常常会这样处理数据:#传统方式加载数据images=[...]#所有图片数据labels=[...]#所有标签foriinrange(0,len(images),32):batch_images=images[i:i+32]batch_labels=labels[i:i+32]#训练代码...这种方式
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分