POJ 1180 Batch Scheduling(斜率优化DP)

题意:

黑书 152,任务调度问题。

思路:

1. 因为考虑到运行时间偏移,把 di 解释成:从任务 i 开始到 最后一个任务结束,最少的总代价;

2. d[i] = min(d[j] + w(j+1, i)); w(j+1, i) = (S + sumTi - sumTj) * sumFi;  其中 sumTi sumFi 分别表示 i 到 n 的和;

3. 典型的递推关系式,进一步化简有:di = dj - sumFi*sumTj + M;  M 看成是常量,Y = dj, X = sumTj, A = sumFi; A > 0 且单调增;

4. 利用下凸函数特性,以及斜率优化的知识,可以把算法优化到 O(n);

 

#include <iostream>

#include <algorithm>

using namespace std;



const int MAXN = 10010;

int sumf[MAXN], sumt[MAXN], Q[MAXN], N, S, dp[MAXN];



inline double slope(int i, int j) {

    return 1.0 * (dp[i]-dp[j]) / (sumt[i]-sumt[j]);

}



void workout() {

    int s = 0, e = -1;

    dp[N] = 0; Q[++e] = N;

    for (int i = N-1; i >= 0; i--) {

        while (s < e && slope(Q[s], Q[s+1]) <= (double)sumf[i])

            ++s;

        int j = Q[s];

        dp[i] = dp[j] - sumf[i]*sumt[j] + (S+sumt[i])*sumf[i];

        while (s < e && slope(Q[e], i) <= slope(Q[e], Q[e-1]))

            --e;

        Q[++e] = i;

    }

}



int main() {

    while (~scanf("%d", &N)) {

        scanf("%d", &S);

        for (int i = 0; i < N; i++)

            scanf("%d%d", &sumt[i], &sumf[i]);

        sumt[N] = sumf[N] = 0;

        for (int i = N-1; i >= 0; i--) {

            sumt[i] += sumt[i+1];

            sumf[i] += sumf[i+1];

        }

        workout();

        printf("%d\n", dp[0]);

    }

    return 0;

}

你可能感兴趣的:(batch)