三、实例
下面给出一个简单的二维图形的例子(这个例子都是以上述设置为基础的)。
用Classwizard为COpenGLview添加WMSIZE的消息处理函数OnSize,使之如下所示。
- void COpenGlView::OnSize(UINT nType, int cx, int cy)
- {
- CView::OnSize(nType, cx, cy);
-
- GLsizei width, height;
- GLdouble aspect;
- width = cx;
- height = cy;
- if (cy==0)
- aspect = (GLdouble)width;
- else
- aspect = (GLdouble)width/(GLdouble)height;
-
- glViewport(0, 0, width, height);
- glMatrixMode(GL_PROJECTION);
- glLoadIdentity();
- gluOrtho2D(0.0, 500.0*aspect, 0.0, 500.0);
- glMatrixMode(GL_MODELVIEW);
- glLoadIdentity();
- }
用Classwizard为COpenGLview添加WM_PAINT的消息处理函数OnPaint,同样可以在OnDraw函数中直接诶添加,之如下所示。
- void COpenGlView::OnDraw(CDC* )
- {
- COpenGlTestMFCDoc* pDoc = GetDocument();
- ASSERT_VALID(pDoc);
- if (!pDoc)
- return;
-
- glLoadIdentity();
- glClear(GL_COLOR_BUFFER_BIT);
- glBegin(GL_POLYGON);
- glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
- glVertex2f(100.0f, 50.0f);
- glColor4f(0.0f, 1.0f, 0.0f, 1.0f);
- glVertex2f(450.0f, 400.0f);
- glColor4f(0.0f, 0.0f, 1.0f, 1.0f);
- glVertex2f(450.0f, 50.0f);
- glEnd();
- glFlush();
- }
这个程序的运行结果是黑色背景下的一个绚丽多彩的三角形(如图2所示)。这里你可以看到用OpenGL绘制图形非常容易,只需要几条简单的语句就能实现强大的功能。如果你缩放窗口,三角形也会跟着缩放。这是因为OnSize通过glViewport(0, 0, width, height)定义了视口和视口坐标。glViewport的第一、二个参数是视口左下角的像素坐标,第三、四个参数是视口的宽度和高度。
OnSize中的glMatrixMode是用来设置矩阵模式的,它有三个选项:GL_MODELVIEW、GL_PROJECTION、GL_TEXTURE。GL_MODELVIEW表示从实体坐标系转到人眼坐标系。GL_PROJECTION表示从人眼坐标系转到剪裁坐标系。GL_TEXTURE表示从定义纹理的坐标系到粘贴纹理的坐标系的变换。
glLoadIdentity初始化工程矩阵(project matrix);gluOrtho2D把工程矩阵设置成显示一个二维直角显示区域。
这里我们有必要说一下OpenGL命令的命名原则。大多数OpenGL命令都是以"gl"开头的。也有一些是以"glu"开头的,它们来自OpenGL Utility。大多数"gl"命令在名字中定义了变量的类型并执行相应的操作。例如:glVertex2f就是定义了一个顶点,参数变量为两个浮点数,分别代表这个顶点的x、y坐标。类似的还有glVertex2d、glVertex2f、glVertex3I、glVertex3s、glVertex2sv、glVertex3dv……等函数。
那么,怎样画三角形呢?我们首先调用glColor4f(1.0f, 0.0f, 0.0f, 1.0f),把红、绿、蓝分量分别指定为1、0、0。然后我们用glVertex2f(100.0f, 50.0f)在(100,50)处定义一个点。依次,我们在(450,400)处定义绿点,在(450,50)处定义蓝点。然后我们用glEnd结束画三角形。但此时三角形还没画出来,这些命令还只是在缓冲区里,直到你调用glFlush函数,由glFlush触发这些命令的执行。OpenGL自动改变三角形顶点间的颜色值,使之绚丽多彩。
还可通过glBegin再产生新的图形。glBegin(GLenum mode)参数有:
GL_POINTS,GL_LINES, GL_LINE_STRIP,GL_LINE_LOOP, GL_TRIANGLES,GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,GL_QUADS, GL_QUAD_STRIP, GL_POLYGON
在glBegin和glEnd之间的有效函数有:
glVertex,glColor,glIndex, glNormal,glTexCoord, glEvalCoord,glEvalPoint, glMaterial, glEdgeFlag
四、OpenGL编程小结
1、如果要响应WM_SIZE消息,则一定要设置视口和矩阵模式。
2、尽量把你全部的画图工作在响应WM_PAINT消息时完成。
3、产生一个绘制环境要耗费大量的CPU时间,所以最好在程序中只产生一次,直到程序结束。
4、尽量把你的画图命令封装在文档类中,这样你就可以在不同的视类中使用相同的文档,节省你编程的工作量。
5、glBegin和glEnd一定要成对出现,这之间是对图元的绘制语句。
glPushMatrix()和glPopMatrix()也一定要成对出现。glPushMatrix()把当前的矩阵拷贝到栈中。当我们调用glPopMatrix时,最后压入栈的矩阵恢复为当前矩阵。使用glPushMatrix()可以精确地把当前矩阵保存下来,并用glPopMatrix把它恢复出来。这样我们就可以使用这个技术相对某个物体放置其他物体。例如下列语句只使用一个矩阵,就能产生两个矩形,并将它们成一定角度摆放。
glPushMatrix();
glTranslated( m_transX, m_transY, 0);
glRotated( m_angle1, 0, 0, 1);
glPushMatrix();
glTranslated( 90, 0, 0);
glRotated( m_angle2, 0, 0, 1);
glColor4f(0.0f, 1.0f, 0.0f, 1.0f);
glCallList(ArmPart);//ArmPart 且桓鼍卣竺??
glPopMatrix();
glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
glCallList(ArmPart);
glPopMatrix();
6、 解决屏幕的闪烁问题。我们知道,在窗口中拖动一个图形的时候,由于边画边显示,会出现闪烁的现象。在GDI中解决这个问题较为复杂,通过在内存中生成一个内存DC,绘画时让画笔在内存DC中画,画完后一次用Bitblt将内存DC“贴”到显示器上,就可解决闪烁的问题。在OpenGL中,我们是通过双缓存来解决这个问题的。一般来说,双缓存在图形工作软件中是很普遍的。双缓存是两个缓存,一个前台缓存、一个后台缓存。绘图先在后台缓存中画,画完后,交换到前台缓存,这样就不会有闪烁现象了。通过以下步骤可以很容易地解决这个问题:
1) 要注意,GDI命令是没有设计双缓存的。我们首先把使用InvalidateRect(null)的地方改成InvalidateRect(NULL,FALSE)。这样做是使GDI的重画命令失效,由OpenGL的命令进行重画;
2) 将像素格式定义成支持双缓存的(注:PFD_DOUBLEBUFFER和PFD_SUPPORT_GDI只能取一个,两者相互冲突)。
pixelDesc.dwFlags =
PFD_DRAW_TO_WINDOW |
PFD_SUPPORT_OPENGL |
PFD_DOUBLEBUFFER |
PFD_STEREO_DONTCARE;
3) 我们得告诉OpenGL在后台缓存中画图,在视类的OnSize()的最后一行加入:glDrawBuffer (GL_BACK);
4) 最后我们得把后台缓存的内容换到前台缓存中,在视类的OnPaint()的最后一行加入:SwapBuffers(dc.m_ ps.hdc)。
7、生成简单的三维图形。我们知道,三维和二维的坐标系统不同,三维的图形比二维的图形多一个z坐标。我们在生成简单的二维图形时,用的是gluOrtho2D;我们在生成三维图形时,需要两个远近裁剪平面,以生成透视效果。实际上,二维图形只是视线的近裁剪平面z= -1,远裁剪平面z=1;这样z坐标始终当作0,两者没有本质的差别。
在上述基础之上,我们只做简单的变化,就可以生成三维物体。
1) 首先,在OnSize()中,把gluOrtho2D(0.0, 500.0*aspect,0.0, 500.0)换成gluPerspective(60, aspect, 1, 10.0);这样就实现了三维透视坐标系的设置。该语句说明了视点在原点,透视角是60度,近裁剪面在z=1处,远裁剪面在z=10.0处。
2) 在RenderScene()中生成三维图形;实际上,它是由多边形组成的。下面就是一个三维多边形的例子:
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, RedSurface)
glBegin(GL_POLYGON);
glNormal3d( 1.0, 0.0, 0.0);
glVertex3d( 1.0, 1.0, 1.0);
glVertex3d( 1.0, -1.0, 1.0);
glVertex3d( 1.0, -1.0, -1.0);
glVertex3d( 1.0, 1.0, -1.0);
glEnd();
3) 我们使用glMaterialfv(GL_ FRONT_AND_BACK, GL_AMBIENT, RedSurface)这个函数来定义多边形的表面属性,为每一个平面的前后面设置环境颜色。当然,我们得定义光照模型,这只需在OnSize()的最后加上glEnable(GL_LIGHTING);RedSufFace是一个颜色分量数组,例如:RedSufFace[] ={1.0f,0.0f,0.0f};要定义某个平面的环境颜色,只需把glMaterialfv加在平面的定义前面即可,如上例所示。
4) Z缓冲区的问题:要使三维物体显得更流畅,前后各面的空间关系正确,一定得使用Z缓冲技术;否则,前后各面的位置就会相互重叠,不能正确显示。Z缓冲区存储物体每一个点的值,这个值表明此点离人眼的距离。Z缓冲需要占用大量的内存和CPU时间。启用Z缓冲只需在OnSize()的最后加上glEnable(GL_DEPTH_TEST);要记住:在每次重绘之前,应使用glClear(GL_DEPTH_BUFFER_BIT)语句清空Z缓冲区。
5) 现在已经可以正确地生成三维物体了,但还需要美化,可以使物体显得更明亮一些。我们用glLightfv函数定义光源的属性值。下例就定义了一个光源:
glLightfv(GL_LIGHT0, GL_AMBIENT,LightAmbient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, LightDiffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, LightSpecular);
glLightfv(GL_LIGHT0, GL_POSITION, LightPosition);
glEnable(GL_LIGHT0);
GL_LIGHT0是光源的标识号,标识号由GL_LIGHTi组成(i从0到GL_MAX_LIGHTS)。 GL_AMBIENT、GL_DIFFUSE、GL_SPECULAR、GL_POSITION分别定义光源的周围颜色强度、光源的散射强度、光源的镜面反射强度和光源的位置。
本文例子较简单,VC中还有很多例子。参照本文的设置,你一定能体会到OpenGL强大的图形、图像绘制功能。