Huffman树

结点定义:

1 /*

2  * Huffman树结点定义

3  */

4 struct Node

5 {

6     ElementType weight;         // 结点的权值

7     struct Node *leftChild;     // 结点的左指针

8     struct Node *rightChild;    // 结点的右指针

9 };

根据给定权值数组,构建一个Huffman树:

 1 /*

 2  * 输出内存申请失败的消息

 3  */

 4 void showFailureMessage()

 5 {

 6     printf("Memory allocate failure!\n");

 7     exit(-1);

 8 }

 9 

10 /*

11  * 根据数组获取数组的长度

12  */

13 int getArrayLength(ElementType weights[])

14 {

15 }

16 

17 /*

18  * 对程序运行中申请的内存空间做事后处理

19  */

20 void destroy(struct Node **)

21 {

22 }

23 

24 /*

25  * 为给定权值数组创建一个Huffman树,返回根结点指针

26  */

27 Node * createHuffmanTree(ElementType weights[])

28 {

29     /* 根据传入的数组初始化 */

30     int arrayLength = getArrayLength(weights);

31     struct Node **nodePointerArray = (struct Node **)malloc(sizeof(struct Node *) * arrayLength);

32     if(nodePointerArray == NULL)

33         showFailureMessage();

34     for(int index = 0; index < arrayLength; ++index) {    // 初始化指针数组nodePointerArray,每个指针指向一个二叉树结点

35         nodePointerArray[index] = (struct Node *)malloc(sizeof(struct Node));

36         if(nodePointerArray[index] == NULL) 

37             showFailureMessage();

38         nodePointerArray[index]->weight = weights[index]; // 是树中各结点权值与传入的数组weights中元素一一对应

39         nodePointerArray[index]->leftChild = nodePointerArray[index]->rightChild = NULL;

40     }

41 

42     /* 在初始化基础上进行(数组长度-1)次操作构造Huffman树 */

43     struct Node * rootNode = NULL;

44     for(int index = 0; index < arrayLength; ++index) {

45         /* 找到自index后的最小值和次小值索引 */

46         int lowestIndex = index;

47         int lowSecondIndex = index + 1;

48         for(int innerIndex = lowSecondIndex; innerIndex < arrayLength; ++innerIndex) {

49             if(nodePointerArray[innerIndex]->weight < nodePointerArray[lowestIndex]->weight) {

50                 lowSecondIndex = lowestIndex;

51                 lowestIndex = innerIndex;

52             } else if(nodePointerArray[innerIndex]->weight < nodePointerArray[lowSecondIndex]->weight) {

53                 lowSecondIndex = innerIndex;

54             }

55         }

56         

57         /* 将最小值和次小值所对应的结点(或子树的根结点)生成一颗二叉树 */

58         rootNode = (struct Node *)malloc(sizeof(struct Node));

59         if(rootNode == NULL)

60             showFailureMessage();

61         rootNode->weight = nodePointerArray[lowestIndex]->weight + nodePointerArray[lowSecondIndex]->weight;

62         rootNode->leftChild = nodePointerArray[lowestIndex];

63         rootNode->rightChild = nodePointerArray[lowSecondIndex];

64 

65         /* 此次生成二叉树后,对本次循环的索引值、最小值的索引值、次小值的索引值

66          * 所对应的结点做事后处理(此处巧用最小值和次小值所在结点需要移除) */

67         nodePointerArray[lowestIndex] = rootNode;

68         nodePointerArray[lowSecondIndex] = nodePointerArray[index];

69         nodePointerArray[index] = NULL;

70     }

71     destroy(nodePointerArray);

72 

73     return rootNode;

74 }

Huffman树求得树中各字符编码:

 1 /**

 2  * 由给定的编码Huffman树求得树中各字符编码的算法,并分析器复杂度

 3  **/

 4  void HuffmanCode(Node *root, int index)

 5  {

 6     static int code[SIZE];                                          // code存放字符编码,其长度等于树的深度

 7     if(root != NULL) {

 8         if(root->leftChild == NULL && root->rightChild == NULL) {

 9             cout << "Weight:" << root->data << " coding:";

10             for(int in = 0; in < SIZE; ++in)                        // 输出叶子结点的编码

11                 cout << code[in];

12             count << endl;

13         } else {

14             code[index] = 0;

15             HuffmanCode(root->leftChild, (index + 1));              // 对左子树搜索

16             code[index] = 1;

17             HuffmanCode(root->rightChild, (index + 1));             // 对右子树搜索

18         }

19     }

20  }

 

OK哒!O(∩_∩)O哈!

你可能感兴趣的:(Huffman)