- ROS的可视化工具rviz介绍
Xian-HHappy
机器人-Robot信息可视化
RViz简介RViz(RobotVisualization)是ROS(RobotOperatingSystem)中的一个可视化工具。它主要用于在三维空间中可视化机器人传感器数据、机器人的状态、规划路径等信息。RViz就像是一个“机器人世界”的三维展示窗口,能够让用户直观地看到机器人在虚拟环境中的各种情况。RViz的功能特点多传感器数据可视化RViz可以接收多种传感器数据。例如,它可以显示激光雷达(
- ROS 避障技术介绍
Xian-HHappy
机器人-Robotros避障
ROS避障技术介绍一、ROS避障系统概述ROS(机器人操作系统)作为移动机器人开发的主流框架,其避障技术依托模块化设计,通过传感器数据融合、环境建模与运动规划实现动态障碍物规避。在物流机器人、服务机器人、自动驾驶等场景中,ROS避障系统需满足实时性、安全性与灵活性要求,核心流程包括环境感知-障碍建模-路径规划-运动控制四个环节。二、避障核心组件与原理1.传感器层:环境信息获取激光雷达(如Velod
- RAG系统的“聪明药”:如何用反馈回路让你的AI越用越聪明?
许泽宇的技术分享
人工智能
大家好,我是你们的AI技术侃侃而谈小能手。今天我们来聊聊RAG(Retrieval-AugmentedGeneration,检索增强生成)系统的进化之路——如何让它像喝了聪明药一样,越用越聪明,越聊越懂你。你是不是也有这样的体验?用ChatGPT、文档问答机器人,刚开始觉得还行,但用久了发现它总是“死脑筋”,问同样的问题,答得千篇一律,甚至一错再错。你想:“要是它能记住我的吐槽和建议,下次别再犯同
- 多模态融合相机L3CAM
moonsims
人工智能
多模态融合相机L3CAML3CAM是Beamagine公司推出的多模态传感器融合技术,结合了激光雷达(LiDAR)和可见光摄像头,旨在为自动驾驶、工业机器人和其他需要精确环境感知的应用场景提供高效、安全的解决方案。L3CAM技术参数L3CAM结合了LiDAR和可见光摄像头,使其能够提供三维空间感知及图像级别的环境识别能力激光雷达部分(LiDAR)探测范围:大约200米(具体范围根据不同环境和反射面
- 道可云人工智能每日资讯|江苏首个机器人训练中心在苏州吴江启动
道可云
道可云人工智能人工智能机器人arDeepSeekxr百度
道可云人工智能&元宇宙每日简报(2025年6月26日)讯,今日人工智能&元宇宙新鲜事有:江苏首个机器人训练中心在苏州吴江启动近日,长三角一体化示范区智能机器人训练中心在东太湖度假区(太湖新城)正式启用,成为江苏省首个机器人智能训练中心。该中心占地1500平方米,设有8个训练场景和30个生产工位,涵盖智能制造、商业服务、特种应用三大领域,年产数据可超200万条,旨在加速机器人从实验室走向真实产业场景
- 【Python】PyRoboPath:Python机器人路径规划的终极指南
宅男很神经
python开发语言
PyRoboPath:Python机器人路径规划的终极指南第1部分:PyRoboPath与路径规划基础第1章:PyRoboPath概览与核心理念1.1什么是PyRoboPath?PyRoboPath是一个先进的、开源的Python库,致力于为学术研究人员、行业工程师以及机器人爱好者提供一套完整、高效、易用且可扩展的机器人路径规划解决方案。它不仅仅是一个算法的集合,更是一个集成了机器人建模、环境表示
- 机器人系统导航里程计介绍
Xian-HHappy
机器人机器人人工智能算法里程计
一、引言在移动机器人的研究与应用领域,精准且实时地确定机器人的位置与姿态是实现其自主功能的关键。里程计作为达成这一目标的核心技术之一,在移动机器人的自主导航、路径规划、定位以及地图构建等诸多关键领域扮演着举足轻重的角色。随着机器人技术的持续演进,里程计已蜕变成为移动机器人实现SLAM(同步定位与地图构建)功能的基石。它通过对各类传感器所采集数据的精细计算与处理,运用增量式递推的策略,实时推算出机器
- AI日报-20250627:谷歌Gemma 3n发布,百亿参数只需2G内存!荣耀启动IPO冲刺2000亿估值!
大数据AI-ZRL
AI日报人工智能业界资讯自然语言处理
1、黑马FLUX.1-Kontext开源!文本一键PS超越GPT-image-1,AI修图新标杆2、谷歌Gemma3n震撼发布:2G内存跑100亿参数多模态模型,端侧AI迎来革命!3、90后清华博士打造AI厨师!获数千万融资,拿下全国首张机器人食品经营证4、蚂蚁CGM代码图模型震撼开源:44%修复率登顶SWE-Bench,碾压所有开源模型5、快手Keye-VL大模型震撼开源!视频理解能力秒杀人类,
- ROS学习笔记5:常用API和模块导入
前言本人ROS小白,利用寒假时间学习ROS,在此以笔记的方式记录自己每天的学习过程。争取写满15篇(5/15)。环境:Ubuntu20.04、ROS1:noetic环境配置:严格按照下方学习链接的教程配置,基本一次成功。学习链接:【Autolabor初级教程】ROS机器人入门对应链接文档:ROS机器人入门课程《ROS理论与实践》笔记绝大部分代码使用Python语言编写。本期关键词:初始化,话题服务
- UR Studio仿真工具上线助力协作机器人快速部署与精准配置模拟
欣佰特cnbestec
机器人优傲优傲机器人URStudioPolyScopeXAI协作机器人
URStudio仿真工具是专为协作机器人自动化部署打造的一款集成化、在线式仿真平台。它基于PolyScopeXAI平台开发,提供从方案设计到仿真验证的一体化流程,帮助企业提升自动化项目的设计效率与实施成功率。工程师无需复杂操作即可快速上手,轻松应对多变的生产需求。无论是初学者还是资深用户,都能通过直观的界面完成仿真任务,实现智能制造的高效转型。URStudio仿真工具核心优势平台集成,提升协作效率
- Delta视觉定位系统
东城十三
vuca数码相机计算机视觉目标跟踪算法人工智能机器学习
Delta视觉定位系统软件应用背景Delta机器人以并联构型实现“轻量、高速、高精度”三位一体,成为高速分拣、精密装配、食品包装等领域的佼佼者。然而,其卓越的物理性能要转化为实际作业中的高精度定位取放能力,视觉定位系统是不可或缺的“眼睛”和“导航员”。尤其在面对高速运动目标或随机摆放(无序)物体的复杂场景时,视觉系统是实现高效、精准作业的核心技术保障。通过机器视觉实时识别目标物体的位置与姿态,引导
- 3天狂揽2.8k星!manus 开源替代又又又又又又又来啦! 逆天AI助理Suna开源!免费替你搞定一切,效率飙升!
梦玄海
人工智能开源编辑器stablediffusiongolang
今天给大家挖来一个超级宝藏!你是不是也曾幻想过拥有一个钢铁侠的贾维斯那样,能帮你处理各种繁琐任务的AI伙伴?能在你忙得焦头烂额时,优雅地帮你完成研究、分析数据、甚至处理各种日常挑战?别再幻想了!今天的主角——Suna,就是这样一个为你而生的开源通用AI智能体!它不仅仅是一个聊天机器人,更是一个能代表你行动、解决现实世界问题的得力干(工)助(具)手(人)!在GitHub上,光发布几天的Suna项目已
- 基于机器学习的人形机器人电池健康状态预测方法
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据机器学习机器人人工智能ai
基于机器学习的人形机器人电池健康状态预测方法:从理论到实践的系统解析关键词电池健康状态(SOH)、剩余使用寿命(RUL)、人形机器人、机器学习、时序数据建模、多模态特征融合、边缘计算部署摘要本报告系统解析基于机器学习的人形机器人电池健康状态预测方法,覆盖从理论框架到工程实现的全链路。首先界定人形机器人场景下电池健康状态的核心指标(SOH/RUL/RC),梳理从电化学模型到数据驱动方法的技术演进;其
- n8n和dify有什么区别
小雷FansUnion
AI2025人工智能
n8nvsDify全面对比分析1.产品定位对比1.1核心定位差异维度n8nDify产品类型工作流自动化平台AI应用开发平台主要用途连接不同服务,实现业务自动化快速构建AI聊天机器人和应用目标用户业务人员、运营人员、开发者AI应用开发者、产品经理核心价值提升工作效率,减少重复劳动降低AI应用开发门槛1.2应用场景对比n8n应用场景:├──数据同步自动化│├──CRM与邮件系统同步│├──表格数据自动
- 基于python快速部署属于你自己的页面智能助手
小张Tt
python人工智能腾讯云AI代码助手
文章目录前言一、实现目标二、代码解析2.1目录结构2.2后端:Flask服务器的搭建2.2.1安装Flask2.2.2创建Flask应用2.3实现聊天界面与消息交互2.3.1创建聊天界面三、跨域问题的解决3.1安装flask-cors3.2在Flask中启用CORS五效果展示前言 AI聊天机器人已经成为了许多应用场景中的重要组成部分。通过与用户的对话,聊天机器人不仅能够提升用户体验,还能通过不断
- Veo 3 可以生成视频,并附带配乐
TechVision大咖圈
音视频人工智能
谷歌最新的视频生成AI模型Veo3可以创建与其生成的剪辑相配的音频。周二,在谷歌I/O2025开发者大会上,谷歌发布了Veo3。该公司声称,这款产品可以生成音效、背景噪音,甚至对话,为其制作的视频增添配乐。谷歌表示,Veo3在生成的视频质量方面也比上一代Veo2有所提升。Veo3从周二开始在谷歌的Gemini聊天机器人应用程序中推出,供谷歌每月249.99美元的AIUltra计划订阅者使用,可以通
- AI正在偷偷取代这10种职业,你的工作安全吗?
近年来,人工智能(AI)的飞速发展正在悄然改变我们的工作方式。从自动化客服到AI生成内容,许多传统职业正面临被取代的风险。虽然AI带来了更高的效率和便利,但也让不少人开始担忧:我的工作会被AI抢走吗?今天,我们就来盘点10种最容易被AI取代的职业,并探讨如何在这个AI时代保持竞争力。1.客服代表取代指数:★★★★★AI驱动的聊天机器人(如ChatGPT、GoogleBard)已经能够处理大部分基础
- 【机器学习&深度学习】反向传播机制
目录一、一句话定义二、类比理解三、为什重要?四、用生活例子解释:神经网络=烹饪机器人4.1第一步:尝一口(前向传播)4.2第二步:倒着推原因(反向传播)五、换成人工智能流程说一遍六、图示类比:找山顶(最优参数)七、总结一句人话八、PyTorch代码示例:亲眼看到每一层的梯度九、梯度=损失函数对参数的偏导数十、类比总结反向传播(Backpropagation)是神经网络中训练过程的核心机制,它就像“
- 鞋履智造的“隐形工匠”:PROFIBUS DP转ETHERNET/IP网关应用实践
在鞋履制造产线中,西门子PLC凭借PROFIBUSDP协议实现精准逻辑控制,而涂胶机器人多采用ETHERNET/IP协议执行鞋面粘合与处理任务。为实现设备高效协同,JH-PB-EIP疆鸿智能PROFIBUSDP转ETHERNET/IP网关化身“通信中枢”,破解协议壁垒,成为提升鞋子舒适度与耐用性的核心助力。硬件连接时,需先在西门子PLC中完成DP从站组态,设定地址并通过专用电缆接入网关DP端口,针
- 别再为通信发愁!机床厂PROFIBUS DP转EtherNet/IP网关应用指南,低成本实现智能升级
JIANGHONGZN
PROFIBUSDP工业通讯协议网关ETHERNET/IP
在现代机床制造工厂中,设备间的无缝通信是实现高效、柔性生产的关键。西门子PLC(如S7-300/1500系列)作为核心控制器广泛采用PROFIBUSDP现场总线,而高端机器人系统(如FANUC、KUKA)则普遍支持EtherNet/IP协议。在这类异构网络共存的环境中,协议转换网关成为打通数据壁垒的核心枢纽。网关的核心作用与工作流程角色定位:网关作为“翻译官”,部署在西门子PLC(PROFIBUS
- PROFIBUS DP转EtherNet/IP网关:精密医疗器械粘合密封的质量守护者
JIANGHONGZN
PROFIBUSETHERNET/IPDP协议网关工业通讯机器人
在医疗器械制造领域,精密部件(如输液器接头、植入体密封壳)的粘合与密封工艺对可靠性和一致性要求近乎苛刻。这类工艺通常由高速、高精度的涂胶机器人执行,而其精准动作离不开与核心控制系统(如西门子PLC)的无缝数据交互。当产线中同时存在西门子PROFIBUSDP网络与支持EtherNet/IP的机器人时,专用协议转换网关便成为确保“数据血液”畅通的关键设备。网关的核心角色:协议翻译与无缝桥接此类网关设备
- 十四、buildroot 系统package新增应用 编写规则
暮云星影
瑞芯微linux
4.7.2、编写规则1、规范概述Buildroot像一个「自动化厨房」,每个包是一道菜。如果菜名(包名)、食材位置(路径)、做法(脚本)不统一,厨房会报错。规范是让机器人(Buildroot脚本)能读懂你的菜谱。2、命名规则包目录名(package/下的文件夹)小写字母+短横线,如package/my-app配置项名(Config.in里的变量)BR2_PACKAGE_+包目录名大写+下划线分隔,
- OpenCV实现相机标定的棋盘格制作与应用
BIG-HO
本文还有配套的精品资源,点击获取简介:在计算机视觉领域,棋盘格标定板用于获取相机参数,实现图像校正和三维重建。OpenCV库提供了绘制棋盘格和相机标定的功能。本文将详细介绍如何使用OpenCV制作棋盘格标定板,包括设计、绘制、保存、相机标定过程和应用。通过实际案例,如畸变矫正、三维重建、AR应用和机器人导航,展示棋盘格标定板在视觉技术中的关键作用。1.棋盘格设计与绘制1.1棋盘格的基本概念与应用棋
- ROS2 强化学习:案例与代码实战
芯动大师
ROS2学习目标检测人工智能
一、引言在机器人技术不断发展的今天,强化学习(RL)作为一种强大的机器学习范式,为机器人的智能决策和自主控制提供了新的途径。ROS2(RobotOperatingSystem2)作为新一代机器人操作系统,具有更好的实时性、分布式性能和安全性,为强化学习在机器人领域的应用提供了更坚实的基础。本文将通过一个具体案例,深入探讨ROS2与强化学习的结合应用,并提供相关代码实现。二、案例背景本案例以移动机器
- Epson RC+软件二次开发:EpsonRC+软件通信协议详解
kkchenjj
工业软件二次开发全集机器人工业软件机器人开发工业软件开发工业软件二次开发
EpsonRC+软件二次开发:EpsonRC+软件通信协议详解EpsonRC+软件二次开发:通信协议详解1.1.EpsonRC+软件概述EpsonRC+软件是Epson机器人系统的核心控制软件,它提供了丰富的功能和界面,用于编程、控制和监控Epson机器人。RC+软件支持多种编程语言,包括Epson的专用语言和标准的C/C++语言,这为二次开发提供了坚实的基础。1.11.1EpsonRC+软件功能
- EtherCAT工业实时以太网深度解析:从高速控制到智能互联的技术革命
AI_DL_CODE
EtherCAT工业实时以太网运动控制分布式时钟TSN工业互联网机器人控制
摘要:本文系统阐述EtherCAT(以太网控制自动化技术)在工业自动化中的战略地位与技术实现,揭示其作为高速实时通信协议的核心优势。通过微秒级响应、纳秒级同步及灵活拓扑等特性,EtherCAT在机器人、高端装备等场景中占据主导地位。文中结合多轴运动控制、跨协议集成等典型应用,提供从分布式时钟配置到故障诊断的完整代码示例,并解析TSN融合、AI驱动等未来演进方向。实测数据表明,EtherCAT可使控
- PowerLink工业实时以太网深度解析:开源生态下的硬实时通信技术革命
摘要:本文系统阐述PowerLink(EthernetPOWERLINK)在工业自动化中的战略定位与技术实现,揭示其作为开源实时以太网协议的核心优势。通过微秒级响应、灵活拓扑及开源生态等特性,PowerLink在运动控制、过程控制等领域占据独特地位。文中结合高速灌装、多轴机器人等典型场景,提供从网络配置到安全逻辑的完整代码示例,并解析TSN融合、AI驱动等未来演进方向。实测数据表明,PowerLi
- 2025最新滑块验证码、图形验证码、解决滑块验证码识别的技术方法大全
猫头虎
前端技术专区深度学习javascript正则表达式typescript滑块验证码行为验证人机识别前端集成
2025最新滑块验证码、图形验证码、解决滑块验证码识别的技术方法大全概述滑块验证码(SliderCaptcha)自上线以来,以其交互性强、用户体验较好而被广泛应用于各类网站和APP的登录、注册、支付等关键环节。相比传统文字验证码或图形混淆验证码,滑块验证码能够更有效地区分真人与机器人,降低恶意脚本的通过率。然而,随着技术的发展,滑块验证码也不断被识别与破解。本文将从「生成与验证组件」和「识别与破解
- 增强版 Kimi:AI 驱动的智能创作平台,实现一站式内容生成(图片、PPT、PDF)!
每天译点晓知识
AI人工智能专栏人工智能PPTPDF一键生成AI图片生成
前言基于扣子Coze零代码平台,我们从零到一轻松实现了专属Bot机器人的搭建。AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI的不同形态愈发显现,如何将其动态组合,凸显其强大爆发力!!!接下来,我们介绍通过Kimi进行功能增强?使得我们的Bot具备一键生成图片、PPT编写、PDF制作......模型配置Kimi月之暗面旗下国产大模型,以独特的长文本处理能力,
- ROS系列(三):从零构建机器人通信系统 --- 包创建+发布订阅+Launch实战 & RViz/rqt可视化利器拆解!
引言机器人操作系统(ROS)的核心在于其模块化通信架构与高效的开发流程。本指南直击ROS开发的核心技术环节,助你快速构建功能节点并实现系统集成。你将从理解工作空间(catkin_ws)这一代码与编译的容器开始,掌握使用catkin_create_pkg创建功能包(Package)的方法,并深入关键配置文件CMakeLists.txt与package.xml的作用。核心在于编写节点(Node):通过
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号