- 【rknn】onnx转rknn脚本解读以及函数解读(版本V1.7.3)
阿颖&阿伟
【11-1】rknn开发板rknn模型转换
目录1.RKNN()示例:2.rknn.config()batch_size:mean_values:std_values:channel_mean_value:epochs:reorder_channel:force_builtin_permneed_horizontal_merge:quantized_dtype:quantized_algorithmmmse_epoch:optimizati
- huggingface/pytorch-image-models
GarryLau
ML&DLpytorchpythonhuggingface
huggingface/pytorch-image-models1.使用技巧1.1.训练指令单卡:pythontrain.py--pretrained--input-size3224224--mean000--std111--batch-size128--validation-batch-size128--color-jitter-prob0.2--grayscale-prob0.2--gauss
- Mybatis Plus 真正批量插入
癸酉金鸡
mybatis
一、MybatisPlus默认批量插入saveBatch方法在IService中,是使用同一个sqlSession,这相比遍历集合循环insert来说有一定的性能提升,但是这并不是sql层面真正的批量插入。二、jdbc添加rewriteBatchedStatements=true无法改变本质三、真正批量插入继承DefaultSqlInjector自定义sql注入器publicclassMySqlI
- Spring Batch批处理操作与实践
面朝大海,春不暖,花不开
基础管理后台开发springbatch前端
SpringBatch是一个强大的批处理框架,专为处理大规模数据和执行复杂批处理任务而设计。它基于Spring框架构建,继承了Spring的许多优点,如依赖注入、事务管理等,同时提供了丰富的功能来简化批处理应用的开发。什么是批处理?批处理是指在后台运行的一系列操作,通常用于处理大量数据或执行长时间运行的任务。这些任务往往不需要用户交互,可以在非高峰时段运行,以减少对系统资源的影响。常见的批处理任务
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- 单细胞分析(11)——scRNA-seq数据整合
生信小鹏
生信技能学习scRNA单细胞测序经验分享
单细胞RNA-seq数据整合:SeuratIntegrationandHarmony1.研究背景在单细胞RNA测序(scRNA-seq)研究中,批次效应(batcheffect)是不可忽视的问题。不同样本来源(如多个实验室、不同测序平台、不同患者)可能会导致非生物学因素的影响,从而影响数据分析的准确性。之前单独写过Harmony去除批次,为了更好地整合多个样本,这次使用以下两种方法进行批次校正:S
- QT批量UI操作
qt
在QT批量操作的时候,可以选择先将渲染关闭,用户操作关闭,等执行完后,开启渲染,开启用户操作voidbeginBatchOperations(QWidget*widget){widget->setUpdatesEnabled(false);widget->setEnabled(false);//需要的话还可以把滚动条disabled}voidendBatchOperations(QWidget*w
- IPS,IPS,FPS
NLstudy33
人工智能python算法
**IPS(ImagesperSecond)=(batch_size*accumulate_step)/step_time**,**IPS(IterationsPerSecond)**以及**FPS(FramesPerSecond)**确实有一些区别,但它们之间是相互关联的。**三者的区别与联系**-5.**为什么会有不同的公式?**-**IPS(ImagesperSecond)**和**FPS(
- 机器学习算法工程师笔试选择题(1)
Ash Butterfield
机器学习算法人工智能
1.关于梯度下降的说法正确的是:A.梯度下降法可以确保找到全局最优解。B.随机梯度下降每次使用所有数据来更新参数。C.批量梯度下降(BatchGradientDescent)通常收敛更快。D.学习率过大会导致梯度下降过程震荡。答案:D(学习率过大会导致不稳定,可能震荡或无法收敛)2.在以下算法中,哪种算法属于无监督学习?A.逻辑回归B.K-近邻算法C.支持向量机D.K-均值聚类答案:D(K-均值聚
- SqlServe到PG迁移错误:无效的编码序列"UTF8": 0x00
weixin_34044273
数据库java
2019独角兽企业重金招聘Python工程师标准>>>环境:sqlserver2008R2(winXP)postgresql9.3.4(win7-64bit)1.通过java像PostgreSQL提交批量insert(或者普通insert或者执行copy):错误:java.sql.BatchUpdateException:批次处理被中止,呼叫getNextException以取得原因。解决:在ca
- 17.推荐系统的在线学习与实时更新
郑万通
推荐系统
接下来就讲解推荐系统的在线学习与实时更新。推荐系统的在线学习和实时更新是为了使推荐系统能够动态地适应用户行为的变化,保持推荐结果的实时性和相关性。以下是详细的介绍和实现方法。推荐系统的在线学习与实时更新在线学习的概念在线学习(OnlineLearning)是一种机器学习方法,与传统的批量学习(BatchLearning)不同,在线学习模型能够在数据流到达时逐步更新,而不是在整个数据集上训练一次。这
- pytorch笔记:mm VS bmm
UQI-LIUWJ
pytorch学习pytorch笔记人工智能
1bmm(batchmatrixmultiplication)批量矩阵乘法,用于同时处理多个矩阵的乘法bmm的输入是两个3D张量(batchofmatrices),形状分别为(batch_size,n,m)和(batch_size,m,p)bmm输出的形状是(batch_size,n,p)2mmmm是标准的矩阵乘法操作,用于两个二维矩阵相乘mm仅适用于2D张量,输入的形状分别是(n,m)和(m,p
- 深度学习算法informer(时序预测)(一)(数据编码讲解)
槑槑紫
深度学习深度学习算法人工智能
前言:informer代码是在transformer代码基础上进行优化,请先了解transformer原理informer代码中数据编码包括三部分,位置编码、数据编码、时间编码目标:时序数据有7个特征,通过24个时间点(可以是年、月、日、时、分、秒)的数据预测未来1个时间点的数据一、位置编码1.pe不需要计算梯度,存放位置编码,形状为(max_len,d_model)2.若x的形状是(batch_
- RocketMQ实战—10.营销系统代码优化
东阳马生架构
RocketMQ原理与应用rocketmq营销系统
大纲1.营销系统引入MQ实现异步化来进行性能优化2.基于MQ释放优惠券提升系统扩展性3.基于Redis实现重复促销活动去重4.基于促销活动创建事件实现异步化5.推送任务分片和分片消息batch合并发送实现6.推送系统与用户群体查询逻辑解耦7.查询用户数据以及批量发送推送消息8.线程池封装以及推送系统多线程推送9.推送系统的千万级消息多线程推送10.千万级用户惰性发券代码实现11.指定用户群体发券的
- 0 Token 间间隔 100% GPU 利用率,百度百舸 AIAK 大模型推理引擎极限优化 TPS
百度云大模型gpu
01什么是大模型推理引擎大模型推理引擎是生成式语言模型运转的发动机,是接受客户输入prompt和生成返回response的枢纽,也是拉起异构硬件,将物理电能转换为人类知识的变形金刚。大模型推理引擎的基本工作模式可以概括为,接收包括输入prompt和采样参数的并发请求,分词并且组装成batch输入给引擎,调度GPU执行前向推理,处理计算结果并转为词元返回给用户。和人类大脑处理语言的机制类似,大模型首
- 深度学习|表示学习|Batch Normalization 详解:数学、代码与经验总结|22
漂亮_大男孩
表示学习深度学习batch人工智能神经网络cnn
如是我闻:在深度学习模型中,BatchNormalization(简称BN)是一种常用的技术,能有效加速训练并提高模型的稳定性。BN通过对mini-batch数据进行归一化,使每层的输入数据分布保持稳定,从而缓解梯度消失/爆炸问题,同时减少对权重初始化的敏感性。在本篇文章中,我们将从数学推导、代码实现和经验总结三个方面,详细探讨BatchNormalization的工作原理,并分析为什么BN应该放
- 使用accumulate step节省显卡内存
前程似锦蝈蝈
python机器学习人工智能
使用前提:单卡,模型+batch=1的数据能跑起来使用accumulatestep的意思就是,每次forward较小的batch,如batch=4,每4steps再更新一次参数,训练结果等效于batch=16先跑一次原先的模型pythonNLinear_exp_full.py--accu_step1--batch16epoch:0timecomsuming:1.8598144054412842tr
- 大数据Lambda 架构和Kappa 架构的优缺点和使用场景
胶水代码
系统架构设计师大数据架构
Lambda架构和Kappa架构是用于处理大数据的两种架构设计模式,针对不同的数据处理需求提供了不同的方案。它们各自有优缺点,并适用于不同的使用场景。Lambda架构Lambda架构分为三个层次:批处理层(BatchLayer)、实时处理层(SpeedLayer)和合并层(ServingLayer)。它旨在同时处理批量数据和实时数据,确保数据处理的准确性和低延迟。优点:高容错性:批处理层通过处理历
- C++自研3D教程OPENGL版本---动态批处理的基本实现
千年奇葩
三维引擎3d算法
又开始找工作了,借机休息出去旅行两个月,顺便利用这段时间整理下以前写的东西。以下是一个简单的动态批处理实现:#include#include#include#include//顶点结构体structVertex{floatx,y,z;//位置floatr,g,b;//颜色};//动态批处理类classDynamicBatch{public:DynamicBatch(){//初始化VAO和VBOgl
- vLLM显存优化
xnuscd
人工智能机器学习算法
在使用vLLM框架进行大模型推理时,为了最大程度地减少GPU显存的占用,可以从以下几个方面调整参数和配置:1.调整max_batch_size参数max_batch_size:这是批处理的最大大小。较大的批处理尺寸会占用更多的显存。如果显存有限,可以降低max_batch_size。建议:从小的batch_size开始,逐步调高,找到合适的平衡点。2.使用offload功能vLLM支持将部分张量或
- deepseek本地部署会遇到哪些坑
skyksksksksks
AI个人杂记人工智能深度学习神经网络自然语言处理
在本地部署DeepSeek(或其他类似AI模型)时,可能会遇到以下常见问题及解决方案:1.硬件资源不足问题表现:GPU不兼容(如型号过旧)、显存不足(OOM错误)或CPU模式性能极低。解决方案:确认GPU支持CUDA,检查显存需求(如至少16GB显存)。使用nvidia-smi监控显存,通过降低batch_size或模型量化(如FP16/INT8)优化资源。CPU模式下考虑模型轻量化(如使用ONN
- Kafka源码解剖
纸短情长恋曲
kafka大数据java
1、Kafka源码解刨生产者会将数据封装成ProducerRecord对象,进行序列化操作后便会根据默认分区规则(轮询策略)。分区的数据会获取集群元数据注册broker信息,并通过RecordAccumulator缓存池创建对应的Sender的线程,在该线程中会将请求封装成一个batch,最后在把整个batch数据发送到broker上。1.1元数据加载 1、主线程发送消息尝试拉取元数据,在Mate
- 深度学习篇---深度学习中的超参数&张量转换&模型训练
Ronin-Lotus
深度学习篇深度学习人工智能paddlepaddlepytorch超参数张量转换模型训练
文章目录前言第一部分:深度学习中的超参数1.学习率(LearningRate)定义重要性常见设置2.批处理大小(BatchSize)定义重要性常见设置3.迭代次数(NumberofEpochs)定义重要性常见设置4.优化器(Optimizer)定义重要性常见设置5.损失函数(LossFunction)定义重要性常见设置6.正则化(Regularization)定义重要性常见设置7.网络架构(Net
- TensorFlow、把数字标签转化成onehot标签
dg989385783
在MNIST手写字数据集中,我们导入的数据和标签都是预先处理好的,但是在实际的训练中,数据和标签往往需要自己进行处理。以手写数字识别为例,我们需要将0-9共十个数字标签转化成onehot标签。例如:数字标签“6”转化为onehot标签就是[0,0,0,0,0,0,1,0,0,0].首先获取需要处理的标签的个数:batch_size=tf.size(labels)1假设输入了6张手写字图片,那么对应
- 不同之间Vlan通信
Fly&L
HCIE---datacom网络运维华为
Vlan间路由vlan:相当于把交换机变成一共虚拟路由器vlan间路由概述vlan间路由:通过三层设备路由,使得不同vlan间可以互相通信。仅仅允许单播通信vlan间路由方式:1、SVI(交换虚接口)(三层交换机)或2、vlanif口单臂路由(路由器)vlan间路由:SVI:switchvirtualinterfacesw1:vlanbatch1020intg0/0/1portlink-typea
- 机器学习笔记——正则化
好评笔记
补档机器学习人工智能论文阅读AIGC计算机视觉深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的正则化方法。文章目录正则化L1正则化(Lasso)原理使用场景优缺点L2正则化(Ridge)原理使用场景优缺点ElasticNet正则化定义公式优点缺点应用场景Dropout原理使用场景优缺点早停法(EarlyStopping)原理使用场景优缺点BatchNormalization(BN)原理使用
- 大模型低显存推理优化-Offload技术
AI大模型-大飞
javaspring前端大模型学习大模型AI大模型大模型教程
近两年大模型火出天际;同时,也诞生了大量针对大模型的优化技术。本系列将针对一些常见大模型优化技术进行讲解。[大模型推理优化技术-KVCache][大模型推理服务调度优化技术-Continuousbatching]大模型显存优化技术-PagedAttention大模型低显存推理优化-Offload技术大模型优化技术-FlashAttention大模型解码优化-SpeculativeDecoding及
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- 《深度学习入门:梯度下降法全解析,小白必看!》
Lemon_wxk
深度学习
目录一、引言二、什么是梯度下降?2.1误差的计算2.2梯度的计算2.3参数更新2.4重复迭代三、梯度下降法的几种主要类型1.批量梯度下降(BatchGradientDescent)2.随机梯度下降(StochasticGradientDescent,SGD)3.小批量梯度下降(Mini-BatchGradientDescent)四、梯度下降的挑战与解决方案1.学习率的选择2.局部最小值与鞍点3.梯
- Kafka 实现之消息及消息格式
流华追梦
KafkakafkaKafka消息Kafka消息格式消息批次控制批次RecordHeader旧消息格式
目录一.前言二.Kafka消息(Messages)三.Kafka消息格式(MessageFormat)3.1.消息批次(RecordBatch)3.1.1.控制批次(ControlBatches)3.2.记录(Record)3.2.1.记录的Header(RecordHeader)3.3.旧消息格式(OldMessageFormat)一.前言Kafka的消息格式是由消息的键和值组成的。每条消息都有
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号