UVa 二分图匹配 Biginners

UVa 1045 - The Great Wall Game 最小权匹配


题意:给你一个n*n的棋盘,上面有n个棋子,要求通过移动各个棋子使得棋子在同一行或者同一列或者对角线上,求最小移动次数。

思路:直接对于所有可能情况构造二分图,X集合为最初棋子,Y集合为移动后的棋子方位,边权为移动的次数。然后KM算法求最小权匹配。

 

/* **********************************************

Author      : JayYe

Created Time: 2013-8-18 15:55:41

File Name   : zzz.cpp

 *********************************************** */



#include <stdio.h>

#include <string.h>

#include <algorithm>

using namespace std;



int max(int a, int b) { return a>b?a:b; }

int min(int a, int b) { return a>b?b:a; }



const int maxn = 22;



struct PP {

    int x, y;

}a[maxn];



int n, slack[maxn], lx[maxn], ly[maxn], match[maxn], w[maxn][maxn];

bool S[maxn], T[maxn];



bool dfs(int i) {

    S[i] = 1;

    for(int j = 1;j <= n; j++) if(!T[j])

        slack[j] = min(slack[j], w[i][j] - lx[i] - ly[j]);

    for(int j = 1;j <= n; j++) if(w[i][j] == lx[i] + ly[j] && !T[j]) {

        T[j] = 1;

        if(!match[j] || dfs(match[j])) {

            match[j] = i;

            return true;

        }

    }

    return false;

}



void update() {

    int delta = 1<<22;

    for(int i = 1;i <= n; i++) if(!T[i])

        delta = min(delta, slack[i]);

    for(int i = 1;i <= n; i++) {

        if(S[i])    lx[i] += delta;

        if(T[i])    ly[i] -= delta;

    }

}



void KM() {

    int i, j;

    for(i = 1;i <= n; i++) {

        ly[i] = match[i] = 0;

        lx[i] = 1<<22;

        for(j = 1;j <= n; j++)

            lx[i] = min(lx[i], w[i][j]);

    }

    for(i = 1;i <= n; i++) {

        while(true) {

            for(j = 1;j <= n; j++) S[j] = T[j] = 0, slack[j] = 1<<22;

            if(dfs(i))  break;

            else    update();

        }

    }

}



int solve() {

    int i, j, k;



    for(i = 1;i <= n; i++)

        scanf("%d%d" ,&a[i].x, &a[i].y);

    int ans = 1<<22;

    // 棋子在同一行的情况

    for(i = 1;i <= n; i++) {

        for(j = 1;j <= n; j++)

            for(k = 1;k <= n; k++)

                w[j][k] = abs(i - a[j].x) + abs(k - a[j].y);

        KM();

        int cur = 0;

        for(j = 1;j <= n; j++)  cur += lx[j] + ly[j];

        ans = min(ans, cur);

    }

    // 棋子在同一列的情况

    for(i = 1;i <= n; i++) {

        for(j = 1;j <= n; j++)

            for(k = 1;k <= n; k++)

                w[j][k] = abs(k - a[j].x) + abs(i - a[j].y);

        KM();

        int cur = 0;

        for(j = 1;j <= n; j++)  cur += lx[j] + ly[j];

        ans = min(ans, cur);

    }

    // 棋子在对角线的两种情况

    for(i = 1;i <= n; i++)

        for(j = 1;j <= n; j++)

            w[i][j] = abs(j - a[i].x) + abs(j - a[i].y);

    KM();

    int cur = 0;

    for(i = 1;i <= n; i++)  cur += lx[i] + ly[i];

    ans = min(ans, cur);



    for(i = 1;i <= n; i++)

        for(j =1;j <= n; j++)

            w[i][j] = abs(j - a[i].x) + abs(n-j+1 - a[i].y);

    KM();

    cur = 0;

    for(i = 1;i <= n; i++)  cur += lx[i] + ly[i];

    ans = min(ans, cur);

    return ans;

}



int main() {

    int cas = 1;

    while(scanf("%d", &n) != -1  && n) {

        printf("Board %d: %d moves required.\n\n", cas++, solve());

    }

    return 0;

}


 

UVa 12168 - Cat vs. Dog 最大独立集


根据题意直接构造二分图,X集合表示喜欢狗的人,Y集合表示喜欢猫的人,如果X集合里的人不喜欢某只猫,就与Y集合里喜欢该猫的人连边,反之也一样。那么要使得尽可能多的人满足愿望,也就是求最大独立集。

最大独立集 = N - 最大匹配


 

/* **********************************************

Author      : JayYe

Created Time: 2013-8-18 16:53:58

File Name   : zzz.cpp

*********************************************** */



#include <stdio.h>

#include <string.h>

#include <algorithm>

using namespace std;



const int maxn = 500+10;

struct PP {

    int x, y;

    PP() {}

    PP(int x, int y) : x(x), y(y) {}

}cat[maxn], dog[maxn];



int n, m, match[maxn];

bool vis[maxn], mp[maxn][maxn];



bool dfs(int i) {

    for(int j = 1;j <= m; j++) if(mp[i][j] && !vis[j]) {

        vis[j] = 1;

        if(!match[j] || dfs(match[j])) {

            match[j] = i;

            return true;

        }

    }

    return false;

}



int main() {

    int i, j, t, c, d;

    scanf("%d", &t);

    while(t--) {

        scanf("%d%d%d", &c, &d, &n);

        int n1 = 0, n2 = 0, x, y;

        for(i = 1;i <= n; i++) {

            char ch1[11], ch2[11];

            scanf("%s%s", ch1, ch2);

            if(ch1[0] == 'C') {

                sscanf(ch1+1, "%d", &x);

                sscanf(ch2+1, "%d", &y);

                cat[++n1] = PP(x, y);

            }

            else {

                sscanf(ch1+1, "%d", &x);

                sscanf(ch2+1, "%d", &y);

                dog[++n2] = PP(x, y);

            }

        }

        n = n1, m = n2;

        if(n == 0 || m == 0) {

            printf("%d\n", n+m); continue;

        }

        for(i = 1;i <= n; i++) {

            for(j = 1;j <= m; j++) {

                if(cat[i].y == dog[j].x || cat[i].x == dog[j].y)

                    mp[i][j] = 1;

                else

                    mp[i][j] = 0;

            }

        }

        for(i = 1;i <= m; i++)  match[i] = 0;

        int ans = 0;

        for(i = 1;i <= n; i++) {

            for(j = 1;j <= m; j++)  vis[j] = 0;

            if(dfs(i))  ans++;

        }

        printf("%d\n", n+m - ans);

    }

    return 0;

}


Uva 1349 - Optimal Bus Route Design

 


题意:给你一个n个点的有向带环图,要你找出几个圈使得每个结点只属于一个圈,要求输出最小的总的长度,如果没有这样的方案,输出N。


构造二分图,把所有的结点拆成两个,放在X集合的为i, 放在Y集合的为 i ',如果有边i -> j,则在图中引入边i -> j',这样子构造好后实际上就是求最小权完美匹配,如果没有完美匹配则无解。

这里需要注意的是输入的边可能有好多条是重复的但是权值不同,需要取最小权,这个wa了我好几发。。。


 

/* **********************************************

Author      : JayYe

Created Time: 2013-8-18 17:31:11

File Name   : zzz.cpp

 *********************************************** */



#include <stdio.h>

#include <string.h>

#include <algorithm>

using namespace std;



int max(int a, int b) { return a>b?a:b; }

int min(int a, int b) { return a>b?b:a; }



const int INF = 1<<22;

const int maxn = 100+10;

int n, slack[maxn], match[maxn], lx[maxn], ly[maxn], w[maxn][maxn];

bool S[maxn], T[maxn];



bool dfs(int i) {

    S[i] = 1;

    for(int j = 1;j <= n; j++) if(!T[j])

        slack[j] = min(slack[j], w[i][j] - lx[i] - ly[j]);

    for(int j = 1;j <= n; j++) if(w[i][j] == lx[i] + ly[j] && !T[j]) {

        T[j] = 1;

        if(!match[j] || dfs(match[j])) {

            match[j] = i;

            return true;

        }

    }

    return false;

}



void update() {

    int delta = INF;

    for(int i = 1;i <= n; i++) if(!T[i])

        delta = min(delta, slack[i]);

    for(int i = 1;i <= n; i++) {

        if(S[i])    lx[i] += delta;

        if(T[i])    ly[i] -= delta;

    }

}



void KM() {

    int i, j;

    for(i = 1;i <= n; i++) {

        ly[i] = match[i] = 0;

        lx[i] = INF;

        for(j = 1;j <= n; j++)

            lx[i] = min(lx[i], w[i][j]);

    }



    for(i = 1;i <= n; i++) {

        while(true) {

            for(j = 1;j <= n; j++)  S[j] = T[j] = 0, slack[j] = INF;

            if(dfs(i))  break;

            else    update();

        }

    }

}



void solve() {

    int i, j;

    for(i = 1;i <= n; i++)

        for(j = 1;j <= n; j++)

            w[i][j] = INF;

    for(i = 1;i <= n; i++) {

        while(scanf("%d", &j) && j) {

            int dis;

            scanf("%d", &dis);

            // 同一条路要取最小值

            w[i][j] = min(w[i][j], dis);

        }

    }

    KM();

    int ans = 0;

    for(i = 1;i <= n; i++)  ans += lx[i] + ly[i];

    if(ans > INF-10)   puts("N");

    else    printf("%d\n", ans);

}



int main() {

    while(scanf("%d", &n) != -1 && n) {

        solve();

    }

    return 0;

}


 


 

你可能感兴趣的:(inner)