- 数据结构与算法领域贪心算法的深度剖析
AI天才研究院
ChatGPT实战计算AgenticAI实战贪心算法算法ai
数据结构与算法领域贪心算法的深度剖析关键词:贪心算法、最优子结构、贪心选择性质、动态规划、贪心策略、时间复杂度、算法设计摘要:本文从贪心算法的核心概念出发,系统剖析其数学原理、算法设计模式及工程实践方法。通过对比贪心算法与动态规划的差异,揭示贪心选择性质和最优子结构的本质联系。结合活动选择、最小生成树、最短路径等经典案例,详细阐述贪心策略的构建过程与正确性证明方法。最后通过工业级项目实战,展示贪心
- 最小生成树算法的解题思路与 C++ 算法应用
Aobing_peterJr
OI算法分析算法c++
一、最小生成树算法针对问题类型及概述先来简要陈述一下树的概念:一个由NNN个点和N−1N-1N−1条边组成的无向连通图。由此,我们可以得知生成树算法的概念:在一个NNN个点的图中找出一个由N−1N-1N−1条边组成的树。具体来说,我们是在一个图G(N,M)G(N,M)G(N,M)中找到一个生成树G(N,N−1)G(N,N-1)G(N,N−1),在生成树G(N,N−1)G(N,N-1)G(N,N−1
- 贪心算法详解:理解贪心算法看这一篇就够了
爪哇学长
Java编程基础及进阶贪心算法算法javapython
文章目录1.贪心算法的基础理论1.1什么是贪心选择性质1.2证明贪心选择性质2.设计步骤2.1定义问题和目标2.2确定数据结构2.3排序和选择策略2.4迭代与决策2.5终止条件3.实例详解3.1活动选择问题3.2分数背包问题3.3最小生成树(Kruskal算法)1.贪心算法的基础理论1.1什么是贪心选择性质贪心选择性质是指一个全局最优解可以通过一系列局部最优的选择构建出来。这意味着在做出每个选择时
- 计算机数据结构图知识点,2011考研计算机数据结构复习重点解析:图的应用
夏欢Vivian
计算机数据结构图知识点
图是数据结构科目中难度最大的重点章节,在这两年的考试中也作为重点来考查。图这部分内容概念多、算法多、难度大。这就需要大家深刻理解每个知识点,多做练习,抓住规律,才能很好地解答这部分试题。图这部分要求大家掌握图的定义、特点、存储结构、遍历、图的基本应用等内容。图这部分的重点和难点是图的基本应用,这在09年和10年的考试中有所体现。图的基本应用包括:最小生成树、最短路径、拓扑排序、关键路径等。09年考
- 贪心算法经典问题
弥彦_
c++算法c++
目录贪心思想一、Dijkstra最短路问题问题描述:贪心策略:二、Prim和Kruskal最小生成树问题Prim算法:Kruskal算法:三、Huffman树问题问题描述:贪心策略:四、背包问题问题描述:贪心策略:五、硬币找零问题问题描述:贪心策略:六、区间合并问题问题描述:贪心策略:七、选择不相交区间问题问题描述:贪心策略:八、区间选点问题问题描述贪心策略九、区间覆盖问题问题描述:贪心策略:十、
- 大厂机试题解法笔记大纲+按知识点分类+算法编码训练
二分法部门人力分配数据最节约的备份方法项目排期食堂供餐矩阵匹配书籍叠放爱吃蟠桃的孙悟空深度优先搜索(DFS)欢乐的周末寻找最大价值矿堆可组成网络的服务器连续出牌数量图像物体的边界核算检测启动多任务排序无向图染色广度优先搜索(BFS)欢乐的周末快递员的烦恼亲子学习跳马启动多任务排序电脑病毒感染图5G网络建设(最小生成树)城市聚集度问题(树形DP、并查集)电脑病毒感染(Dijkstra算法)启动多任务
- Prim算法实现 -- 结合优先级队列
NLP_wendi
数据结构与算法Prim算法
什么是Prim算法?classPrim2:"""P算法最小生成树算法MSTMinimalSpanningTree保证整个拓扑图的所有路径之和最小"""def__init__(self,graph):n=len(graph)#存放横切边self.min_heap=[]#类似于visited数组,记录节点是否在mst中self.inMst=[False]*nself.weightSum=0#三元组se
- 数据结构——图(c)
阿笙_1202
数据结构图论数据结构算法
数据结构——图(c)文章目录数据结构——图(c)一、基本概念和术语1.图2.图的分类3.相关定义4.几种特殊形态的图二、图的存储结构1.邻接矩阵(顺序存储)2.邻接表(顺序+链式存储)3.十字链表-存储有向图4.邻接多重表-存储无向图5.邻接矩阵与邻接表对比三、图的基本操作四、图的遍历1.深度优先搜索(DFS)-辅助栈2.广度优先搜素(BFS)-辅助队列五、图的应用1-最小生成树0.最小代价生成树
- 贪心算法题实战详解
极致人生-010
贪心算法算法
文章目录例题1:活动安排问题例题2:货币找零问题例题3:分数背包问题(部分背包问题)例题4:最小生成树问题(Prim算法)例题5:哈夫曼编码例题6:活动选择问题例题7:硬币找零问题贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(局部最优)的选择,以期望通过一系列局部最优决策达到全局最优解的算法。请注意,贪心算法并不总是能得到全局最优解,但在某些特定问题上非常有效。下面通过几个实战例题来详
- Minimum/Maximum Spanning Tree/Forest
Razhme
算法初步系列
MST问题。对于一个有权无向图,使其原有连通块保持连通性并形成树,同时边权之和最小。换一种说法,最小生成树或者最小生成森林。两个算法一个推论。Kruskal'sAlgorithm基于贪心。将边排序,从最短边开始,若添加了此边,两个不相连的连通块相连了,就添加,否则看下一条。添加到边数为点数-1为止。用并查集检验是否连通。注意Kruskal的原理为,对于图中任意一个点x,对于x点连出去的所有边,边权
- 数据结构与算法学习笔记----Kruskal算法
明月清了个风
数据结构与算法笔记(基础课)算法学习笔记
数据结构与算法学习笔记----Kruskal算法@@author:明月清了个风@@firstpublishtime:2024.12.21ps⭐️这也是一个思想比较简单的算法,只写了基本思想,具体的可以看代码理解一下Kruskal算法Kruskal算法同样是一种基于贪心策略的最小生成树求解算法,另一种是上一篇中的Prim算法。基本思想将所有的边按边长从小到大排序。遍历所有边,判断每条边所连接的两个节
- 图论基础:广度优先搜索与深度优先搜索
夏曦安
图论广度优先搜索深度优先搜索最小生成树算法
图论基础:广度优先搜索与深度优先搜索图论作为计算机科学中重要的数学分支,广泛应用于网络流、最短路径、网络设计等领域。在图论的世界中,图的遍历是基础中的基础,它涉及到许多图算法的设计和实现。本文将重点探讨两种基础的图遍历算法——广度优先搜索(BFS)和深度优先搜索(DFS),以及最小生成树(MST)的相关算法。广度优先搜索(BFS)广度优先搜索是图遍历的一种方法,它从图中的一个顶点开始,尽可能宽广地
- ruskal 最小生成树算法
19要加油
算法
https://www.lanqiao.cn/problems/17138/learning/并查集+ruskal最小生成树算法Kruskal算法是一种用于在加权无向连通图中寻找最小生成树(MST)的经典算法。其核心思想是基于贪心策略,通过按边权从小到大排序并逐步选择边,确保最终形成的树满足以下条件:包含图中所有顶点(即生成树)。边权之和最小(即最小性)。不形成环路(确保是树结构)。算法步骤排序边
- Leetcode刷题 | Day61_图论07
freyazzr
leetcode图论算法数据结构c++
一、学习任务最小生成树——prim算法代码随想录最小生成树——kruskal算法代码随想录Kruskal与prim的关键区别在于,prim维护的是节点的集合,而Kruskal维护的是边的集合。在节点数量固定的情况下,图中的边越少,Kruskal需要遍历的边也就越少。而prim算法是对节点进行操作的,节点数量越少,prim算法效率就越优。边数量较少为稀疏图,接近或等于完全图(所有节点皆相连)为稠密图
- 软考高级《系统架构设计师》知识点(十八)
Ritchie:)
数学与经济管理图论应用最小生成树有两种方法:普里姆算法和克鲁斯卡尔算法,实际计算建议采用克鲁斯卡尔算法。克鲁斯卡尔算法:将图中所有的边按权值从小到大排序,从权值最小的边开始选取,判断是否为安全边(即不构成环),直至选取了n-1条边,构成了最小生成树。最小生成树并不唯一,但权值之和都相等且最小,只要求出一个就可以。最短路径计算从起点到终点的最短路径,注意与关键路径截然相反,不要混淆。方法:从起点开始
- Java语言常用的算法
TPBoreas
算法java算法开发语言
Java语言常用的算法包括:排序算法:冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序等。查找算法:顺序查找、二分查找、哈希查找等。字符串匹配算法:暴力匹配、KMP算法、Boyer-Moore算法等。图论算法:最短路径算法、最小生成树算法、拓扑排序等。动态规划算法:背包问题、最长公共子序列、最长上升子序列等。贪心算法:最小生成树、单源最短路径等。分治算法:快速排序、归并排序等。网
- 搜索与图论--Floyd/Prim/Kruskal
Spike_Q
算法学习图论算法数据结构c++
目录1.Floyd求最短路输入格式输出格式数据范围输入样例:输出样例:代码展示:2.Prim算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:3.Kruskal算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:WATER~1.Floyd求最短路给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。再给定k个询问,每个询问包含两个整数x和y,表
- 普利姆算法-最短路径问题
南方下小雨
算法数据结构
packagedemo28;importjava.util.Arrays;//普利姆算法解决最小生成树问题publicclasssmallTree{publicstaticvoidmain(String[]args){char[]data=newchar[]{'A','B','C','D','E','F','G'};intverx=data.length;int[][]weight=newint[
- 2025年第十六届蓝桥杯省赛B组Java题解【完整、易懂版】
大熊计算机
赛事/证书蓝桥杯java职场和发展
2025年第十六届蓝桥杯省赛B组Java题解题型概览与整体分析题目编号题目名称题型难度核心知识点通过率(预估)A逃离高塔结果填空★☆☆数学规律、模运算95%B消失的蓝宝结果填空★★★同余定理、中国剩余定理45%C电池分组编程题★★☆异或运算性质70%D魔法科考试编程题★★★素数筛、集合去重60%E爆破编程题★★★☆最小生成树、几何计算40%F数组翻转编程题★★☆贪心、数学分析55%G移动距离结果填
- 算法笔记.kruskal算法求最小生成树
xin007hoyo
算法笔记图论
题目:(来源:AcWing)给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的
- 算法笔记.prim算法
xin007hoyo
算法笔记图论
题目:给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。输入格式第
- 青少年编程与数学 02-018 C++数据结构与算法 16课题、贪心算法
明月看潮生
编程与数学第02阶段青少年编程c++贪心算法编程与数学算法
青少年编程与数学02-018C++数据结构与算法16课题、贪心算法一、贪心算法的基本概念定义组成部分二、贪心算法的工作原理三、贪心算法的优点四、贪心算法的缺点五、贪心算法的应用实例(一)找零问题问题描述:贪心策略:示例代码:解释:(二)活动安排问题问题描述:贪心策略:示例代码:解释:(三)霍夫曼编码问题描述:贪心策略:示例代码:解释:(四)最小生成树(Kruskal算法)问题描述:贪心策略:示例代
- C++ 解决一个简单的图论问题 —— 最小生成树(以 Prim 算法为例)
potato_potato_123
C/C++算法图论最小生成树prim算法
使用C++解决一个简单的图论问题——最小生成树(以Prim算法为例),并且使用Graphviz库来生成结果图。在图论中,“边权之和最小”是最小生成树(MST)的核心目标,其含义和背景可以从以下几个方面解释:一、基础定义:什么是“边权之和”?边权:图中每条边的权重(Weight),可以代表实际问题中的成本、距离、时间、容量等量化指标。边权之和:对于一个子图(如生成树),将其中所有边的权重相加得到的总
- 算法设计与分析7(贪心算法)
songx_99
算法设计与分析算法
Prim算法(寻找最小生成树)用途:Prim算法是一种贪心算法,用于在加权无向图中寻找最小生成树(MST),即能够连接图中所有顶点且边的权重之和最小的子图。基本思路:从图中任意一个顶点v开始,将其加入到最小生成树的顶点集合S中。不断从与S中顶点相邻的边中选择一条权重最小的边,将这条边连接的另一个顶点加入到S中。重复上述步骤,直到图中所有顶点都被加入到S中,此时得到的子图就是最小生成树。Dijkst
- kuangbin 最小生成树专题 - POJ - 2421 Constructing Roads (朴素 Prim算法 模板题)
会划水才能到达彼岸
最小生成树专题kuangbin题单算法图论c++数据结构树结构
kuangbin最小生成树专题-POJ-2421ConstructingRoads(朴素Prim算法模板题)英文版Clickhere~~意译版Clickhere~~总题单week3[kuangbin带你飞]题单最小生成树+线段树Clickhere~~https://blog.csdn.net/m0_46272108/article/details/108980362英文版Clickhere~~De
- Objective-C实现prim普里姆算法(附完整源码)
源代码大师
objective-c算法ios
Objective-C实现prim普里姆算法Prim算法是一种用于寻找加权无向图的最小生成树(MinimumSpanningTree,MST)的贪心算法。它的基本思路是从一个起始节点开始,逐步将最小边加入到生成树中,直到所有节点都被包括在内。下面是一个使用Objective-C实现Prim算法的完整源码示例。Objective-C完整源码#import@interfaceGraph:NSObjec
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
avq94452
javac/c++
转载自——》https://www.cnblogs.com/ninedream/p/11203704.html最小生成树:一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。最小生成树问题一般有以下两种求解方式。一、Prim算法
- 图的最小生成树--Prim算法与Kruskal算法
MinBadGuy
数据结构与算法图论primkruskal
1.相关概念1.1生成树概念所谓一个图的生成树是一个极小连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。从上述定义可知,如果一个图有n个顶点和小于n-1条边,则是非连通图,如果它多余n-1条边,必定构成一个环。注意:(1)一个图可以有多棵不同的生成树;(2)具有n-1条边并不一定是生成树。1.2最小生成树给定一个连通网,在该往的所有生成树中,使得各边权值之和最小的那棵生成树称
- 图论---Kruskal(稀疏图)
快乐的小涵
图论c++算法数据结构
O(m*logn)。1,将所有边按权重从小到大排序,调用系统的sort()2,枚举每条边的a,b,权重if(a、b不联通)就将这条边加入集合中//最小生成树—Kruskal算法(稀疏图)#include#includeusingnamespacestd;constintN=200010;intn,m;intp[N];//并查集中的p数组structEdge{inta,b,w;//重载>n>>m;f
- 图论应用解析:从Dijkstra到Floyd算法
健康和谐男哥
图论最短路径Dijkstra算法Floyd算法算法优化
图论应用解析:从Dijkstra到Floyd算法背景简介在计算机科学领域,图的应用无处不在,尤其是在解决最短路径问题上。第7章深入讲解了图论中的一些经典应用,包括最短路径、最小生成树、拓扑排序和关键路径等。本篇博文将重点解读最短路径问题中的两个重要算法——Dijkstra算法和Floyd算法。最短路径问题的Dijkstra算法算法简介Dijkstra算法是由荷兰计算机科学家迪科斯彻提出的,旨在解决
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST