【BZOJ】3669: [Noi2014]魔法森林(lct+特殊的技巧)

http://www.lydsy.com/JudgeOnline/problem.php?id=3669

首先看到题目应该可以得到我们要最小化

min{ max{a(u, v)} + max{b(u, v)} }

两个变量不好做。。。那么我们约束一个a

即按a从小到大排序,依次加边。

发现当有环出现时,去掉的是环中b最大的边。

证明:因为a是从小到大排序,因此此时答案为 a+max{b(u, v)},显然b越小越好。

然后需要link和cut操作。。。

脑洞开到这里开不动了。。。。。。。。。。。。。。。。。。。。。。。

从来没写过维护边权的lct啊啊啊啊啊啊啊啊。。。。!!!

十分犹豫后。。。看题解。。。。。。。。。。。。

QAQ

我怎么没想到将边看做一个单独的节点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

说明我是sb。

那么本题就是将边看做一个单独的节点,然后lct即可。。

2015.6.18 UPD 模板更新..:

#include <bits/stdc++.h>

using namespace std;

const int N=50005, M=100005, oo=~0u>>1;

int n, m;

struct E {

	int x, y, a, b;

}e[M];

inline bool cmp(const E &a, const E &b) {

	return a.a==b.a?a.b<b.b:a.a<b.a;

}

struct node *null;

struct node {

	node *c[2], *f;

	bool rev;

	int pos, w;

	void init() {

		c[0]=c[1]=f=null;

		rev=0;

		w=0;

		pos=0;

	}

	void upd() {

		if(this==null) {

			return;

		}

		rev=!rev;

		swap(c[0], c[1]);

	}

	void up() {

		pos=w;

		if(e[pos].b<e[c[0]->pos].b) {

			pos=c[0]->pos;

		}

		if(e[pos].b<e[c[1]->pos].b) {

			pos=c[1]->pos;

		}

	}

	void down() {

		if(rev) {

			c[0]->upd();

			c[1]->upd();

			rev=0;

		}

	}

	void setc(node *x, bool d) {

		c[d]=x;

		x->f=this;

	}

	bool d() {

		return f->c[1]==this;

	}

	bool isson() {

		return f->c[0]==this || f->c[1]==this;

	}

}Po[N+M], *iT=Po, *nd[N], *ed[M];

node *newnode() {

	iT->init();

	return iT++;

}

void rot(node *x) {

	node *f=x->f;

	bool d=x->d();

	if(f->isson()) {

		f->f->setc(x, f->d());

	}

	else {

		x->f=f->f;

	}

	f->setc(x->c[!d], d);

	x->setc(f, !d);

	f->up();

}

void splay(node *x) {

	static node *s[N+M], *t;

	int top=0;

	for(s[++top]=t=x; t->isson(); t=t->f) { // sb * oo

		s[++top]=t->f;

	}

	while(top) {

		s[top--]->down();

	}

	while(x->isson()) {

		if(!x->f->isson()) rot(x);

		else x->d()==x->f->d()?(rot(x->f), rot(x)):(rot(x), rot(x));

	}

	x->up();

}

node *access(node *x) {

	node *y=null;

	for(; x!=null; y=x, x=x->f) {

		splay(x);

		x->c[1]=y;

	}

	return y;

}

void mkroot(node *x) {

	access(x)->upd();

	splay(x);

}

void split(node *x, node *y) {

	mkroot(x);

	access(y);

	splay(y);

}

void link(node *x, node *y) {

	mkroot(x);

	x->f=y;

}

void cut(node *x, node *y) {

	split(x, y);

	y->c[0]=null;

	x->f=null;

}

node *findrt(node *x) {

	access(x);

	splay(x); // sb * 1

	for(; x->c[0]!=null; x=x->c[0]);

	return x;

}

int ask(node *x, node *y) {

	split(x, y);

	return y->pos;

}

int main() {

	scanf("%d%d", &n, &m);

	for(int i=1; i<=m; ++i) {

		scanf("%d%d%d%d", &e[i].x, &e[i].y, &e[i].a, &e[i].b);

	}

	null=iT++;

	null->init();

	for(int i=1; i<=n; ++i) {

		nd[i]=newnode();

	}

	e[0].b=-oo;

	sort(e+1, e+m+1, cmp);

	int ans=oo;

	for(int i=1; i<=m; ++i) {

		int x=e[i].x, y=e[i].y, b=e[i].b;

		ed[i]=newnode();

		ed[i]->pos=ed[i]->w=i;

		if(findrt(nd[x])==findrt(nd[y])) {

			int pos=ask(nd[x], nd[y]);

			if(e[pos].b>b) {

				cut(ed[pos], nd[e[pos].x]); // sb * 2

				cut(ed[pos], nd[e[pos].y]);

				link(ed[i], nd[x]);

				link(ed[i], nd[y]);

			}

		}

		else {

			link(ed[i], nd[x]);

			link(ed[i], nd[y]);

		}

		if(findrt(nd[1])==findrt(nd[n])) {

			ans=min(ans, e[i].a+e[ask(nd[1], nd[n])].b);

		}

	}

	printf("%d\n", ans==oo?-1:ans);

	return 0;

}

  

#include <cstdio>

#include <cstring>

#include <cmath>

#include <string>

#include <iostream>

#include <algorithm>

#include <queue>

#include <set>

#include <map>

using namespace std;

typedef long long ll;

#define rep(i, n) for(int i=0; i<(n); ++i)

#define for1(i,a,n) for(int i=(a);i<=(n);++i)

#define for2(i,a,n) for(int i=(a);i<(n);++i)

#define for3(i,a,n) for(int i=(a);i>=(n);--i)

#define for4(i,a,n) for(int i=(a);i>(n);--i)

#define CC(i,a) memset(i,a,sizeof(i))

#define read(a) a=getint()

#define print(a) printf("%d", a)

#define dbg(x) cout << (#x) << " = " << (x) << endl

#define error(x) (!(x)?puts("error"):0)

#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)

inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }



const int oo=~0u>>1, N=50005, M=100005;

int w[M];

struct node *null;

struct node {

	node *f, *c[2];

	int pos, k, rev;

	node(int _p=0) { pos=k=_p; f=c[0]=c[1]=null; }

	void setc(node *x, bool d) { c[d]=x; x->f=this; }

	bool d() { return f->c[1]==this; }

	bool check() { return f==null || (f->c[0]!=this && f->c[1]!=this); }

	void upd() { if(this==null) return; rev=!rev; swap(c[0], c[1]); }

	void pushup() { pos=k; if(w[c[0]->pos]>w[pos]) pos=c[0]->pos; if(w[c[1]->pos]>w[pos]) pos=c[1]->pos; }

	void pushdown() { if(rev) rev=0, c[0]->upd(), c[1]->upd(); }

};

void rot(node *x) {

	node *f=x->f;

	f->pushdown(); x->pushdown(); bool d=x->d();

	if(f->check()) x->f=f->f;

	else f->f->setc(x, f->d());

	f->setc(x->c[!d], d);

	x->setc(f, !d);

	f->pushup();

}

void fix(node *x) { if(!x->check()) fix(x->f); x->pushdown(); }

void splay(node *x) {

	fix(x);

	while(!x->check())

		if(x->f->check()) rot(x);

		else x->d()==x->f->d()?(rot(x->f), rot(x)):(rot(x), rot(x));

	x->pushup();

}

node *access(node *x) {

	node *y=null;

	for(; x!=null; y=x, x=x->f) splay(x), x->c[1]=y;

	return y;

}

void mkroot(node *x) { access(x)->upd(); splay(x); }

void split(node *x, node *y) { mkroot(x); access(y); splay(y); }

void link(node *x, node *y) { mkroot(x); x->f=y; }

void cut(node *x, node *y) { split(x, y); y->c[0]->f=null; y->c[0]=null; }

node *findrt(node *x) { access(x); splay(x); while(x->c[0]!=null) x=x->c[0]; return x; }

int ask(node *x, node *y) { split(x, y); return y->pos; }



struct dat { int u, v, a, b; }e[M];

node *root[N+M];

int n, m, ans=oo;



bool cmp(const dat &a, const dat &b) { return a.a<b.a; }

void init() {

	w[0]=-oo;

	sort(e+1, e+1+m, cmp);

	for1(i, 1, m) w[i]=e[i].b;



	null=new node; null->f=null->c[0]=null->c[1]=null;

	for1(i, 1, n) root[i]=new node;

	for1(i, 1, m) root[i+n]=new node(i);



	for1(i, 1, m) {

		int u=e[i].u, v=e[i].v;

		if(findrt(root[u])==findrt(root[v])) {

			int pos=ask(root[u], root[v]);

			if(w[pos]>e[i].b) {

				cut(root[u], root[pos+n]);

				cut(root[v], root[pos+n]);

				link(root[u], root[i+n]);

				link(root[v], root[i+n]);

			}

		}

		else { link(root[u], root[i+n]); link(root[v], root[i+n]); }

		if(findrt(root[1])==findrt(root[n])) ans=min(ans, e[i].a+w[ask(root[1], root[n])]);

	}

}



int main() {

	read(n); read(m);

	for1(i, 1, m) read(e[i].u), read(e[i].v), read(e[i].a), read(e[i].b);

	init();

	printf("%d\n", ans==oo?-1:ans);

	return 0;

}

  

 


 

 

Description

为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士。魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M。初始时小E同学在号节点1,隐士则住在号节点N。小E需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击。幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵。小E可以借助它们的力量,达到自己的目的。

只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无向图中的每一条边Ei包含两个权值Ai与Bi。若身上携带的A型守护精灵个数不少于Ai,且B型守护精灵个数不少于Bi,这条边上的妖怪就不会对通过这条边的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向小E发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小E想要知道,要能够成功拜访到隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为A型守护精灵的个数与B型守护精灵的个数之和。

Input

第1行包含两个整数N,M,表示无向图共有N个节点,M条边。 接下来M行,第行包含4个正整数Xi,Yi,Ai,Bi,描述第i条无向边。其中Xi与Yi为该边两个端点的标号,Ai与Bi的含义如题所述。 注意数据中可能包含重边与自环。

 

Output

输出一行一个整数:如果小E可以成功拜访到隐士,输出小E最少需要携带的守护精灵的总个数;如果无论如何小E都无法拜访到隐士,输出“-1”(不含引号)。

 

 

Sample Input

【输入样例1】
4 5
1 2 19 1
2 3 8 12
2 4 12 15
1 3 17 8
3 4 1 17





【输入样例2】


3 1
1 2 1 1



Sample Output

【输出样例1】

32
【样例说明1】
如果小E走路径1→2→4,需要携带19+15=34个守护精灵;
如果小E走路径1→3→4,需要携带17+17=34个守护精灵;
如果小E走路径1→2→3→4,需要携带19+17=36个守护精灵;
如果小E走路径1→3→2→4,需要携带17+15=32个守护精灵。
综上所述,小E最少需要携带32个守护精灵。



【输出样例2】


-1
【样例说明2】
小E无法从1号节点到达3号节点,故输出-1。

HINT

 

2<=n<=50,000


0<=m<=100,000




1<=ai ,bi<=50,000

 

Source

 

 

你可能感兴趣的:(ZOJ)