- 数据结构应用实例(四)——最小生成树
cyzhou1221
数据结构基础数据结构
Content:一、问题描述二、算法思想三、代码实现四、两种算法的比较五、小结一、问题描述 利用prim算法和kruskal算法实现最小生成树问题;二、算法思想 首先判断图是否连通,只有在连通的情况下才进行最小树的生成;三、代码实现#include#include#include#definemaxx999999#pragmawarning(disable:4996)typedefstruct
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- C语言数据结构克鲁斯卡尔算法-求最小生成树
Yetteego
数据结构与算法(c语言)c语言C语言数据结构
/**克鲁斯卡尔算法*得到图的最小生成树*构造一个无向网的的邻接矩阵*创建一个临时数组*对edge数组进行排序*/#include#include#includetypedefchar*VertexType;//顶点的信息的数据类型typedefintArcType;//权重胡数据类型#defineVERTEXNUM100//最大顶点数#defineMAX_INT32726//权重的无限大取值#d
- 最短路算法一
halcyonfreed
算法
2024061819:33朴素版Dijkstra47:00Heap优化版1:04:00Bellman-ford最短路算法——5种!!!考察重点:不会考算法证明,这里不讲了,重点是实现+抽象1.如何建图——如何定义点边,抽象成一个图问题Prim/i/,kruskal是最小生成树算法不是prime/ai/质数1.是么时候用?方法n图的node数m边数单源:只有一个起点,求从1个点到其他所有点/第n号点
- BZOJ-2521: [Shoi2010]最小生成树(最小割)(本蒟蒻的BZOJ第401 AC撒花~)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2521挺神奇的一个最小割模型,如果要使得该边一定在MST上,那么要保证该边连接的两个连通块之间不存在其他边权小于等于它的边,那么自然就最小割啦。代码:#include#include#includeusingnamespacestd;#definemaxn1010#definemaxv1010#
- 并查集【算法 12】
终末圆
算法算法cc++python数据结构acmc语言
并查集(Union-Find)的基础概念与实现并查集(Union-Find)是一种用于处理不相交集合(disjointsets)的数据结构,常用于解决连通性问题。典型的应用场景包括动态连通性问题(如网络节点连通性检测)、图论中的最小生成树(Kruskal算法)、社交网络中的群体归属等。并查集的两大基本操作合并操作(Union):将两个不同的集合合并为一个集合。查找操作(Find):查询某个元素属于
- 探索贪心算法:解决优化问题的高效策略
快乐非自愿
贪心算法算法
贪心算法是一种在每一步选择中都采取当前最佳选择的算法,以期在整体上达到最优解。它广泛应用于各种优化问题,如最短路径、最小生成树、活动选择等。本文将介绍贪心算法的基本概念、特点、应用场景及其局限性。贪心算法的基本概念贪心算法的核心思想是局部最优策略,即在每一步选择中都选择当前看起来最优的选项,希望通过一系列的局部最优选择达到全局最优。贪心算法的特点局部最优选择:每一步都选择当前状态下最优的操作。无需
- 数据结构——第六章 图
疯子书生z
数据结构数据结构
[知识框架]主要掌握深度优先搜索和广度优先搜索,图的基本概念及基本性质、图的存储结构(邻接矩阵、邻接表、邻接多重表和十字链表)及其特性、存储结构之间的转化、基于存储结构上的遍历操作和各种应用(拓扑排序、最小生成树、最短路径和关键路径)等。通常要求掌握基本思想和实现步骤(手动模拟)。6.1图的基本概念6.1.1图的定义图GGG由顶点集VVV和边集EEE组成,记为G=(V,E)G=(V,E)G=(V,
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 最小生成树 - Kruskal算法
我想进大厂
算法c++图论
kruskal算法---求稀疏图的最小生成树步骤1,将所有边按权重从大到小排序,调用系统的sort函数2,枚举每条边a、b,权重cif(a、b不联通)就将这条边加入集合中输入格式第一行包含两个整数n和m。接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。输出格式共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impos
- 图与树的基本概念
小魏冬琅
其他算法
目录引言图与树结构的重要性图的基本概念图的表示方式图的遍历算法树的基本概念树的定义与性质树的遍历二叉树与多叉树的概念图与树的高级应用最短路径算法最小生成树算法总结与应用综合实例分析引言在计算机科学的世界中,图和树是两种非常重要的数据结构。它们不仅在理论上有着广泛的研究价值,更是在实际编程中广泛应用于网络通信、路径规划、数据库索引等领域。通过深入理解图与树的基本结构与算法,我们可以更高效地解决许多复
- 算法学习6——贪心算法
零 度°
算法学习算法学习贪心算法
什么是贪心算法?贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择的算法。其核心思想是通过一系列局部最优选择来达到全局最优解。贪心算法广泛应用于各种优化问题,如最短路径、最小生成树、背包问题等。贪心算法的特点局部最优选择:每一步都做出在当前情况下最优的选择。无后效性:一旦某个状态被确定,就不会再被改变或回溯。逐步构造解决方案:通过一系列的选择逐步构建出最终的解决方案。经典例子及其Pyt
- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- 蓝桥杯:C++贪心算法、字符串函数、朴素模式匹配算法、KMP算法
DaveVV
蓝桥杯c++蓝桥杯c++贪心算法算法开发语言数据结构c语言
贪心算法贪心(Greedy)算法的原理很容易理解:把整个问题分解成多个步骤,在每个步骤都选取当前步骤的最优方案,直到所有步骤结束;每个步骤都不考虑对后续步骤的影响,在后续步骤中也不再回头改变前面的选择。贪心算法虽然简单,但它有广泛的应用。例如图论中的最小生成树(MinimalSpanningTree,MST)算法、单源最短路径算法(Dijkstra)都是贪心算法的典型应用。贪心算法的主要问题是不一
- 【数据结构】图
rygttm
数据结构数据结构算法
文章目录图1.图的两种存储结构2.图的两种遍历方式3.最小生成树的两种算法(无向连通图一定有最小生成树)4.单源最短路径的两种算法5.多源最短路径图1.图的两种存储结构1.图这种数据结构相信大家都不陌生,实际上图就是另一种多叉树,每一个结点都可以向外延伸许多个分支去连接其他的多个结点,而在计算机中表示图其实很简单,只需要存储图的各个结点和结点之间的联系即可表示一个图,顶点可以采取数组vector存
- 软考30-上午题-数据结构-小结
ruleslol
软考中级学习笔记
一、杂题汇总真题1:有向图——AOV带权有向图——AOE真题2:二叉排序树:左子树<根节点<右子树。二叉排序树中序遍历,节点关键字有序(递增);关键字初始序列有序,二叉树是单支树。(无序,也可以是单支树)真题3:真题4:真题5:真题6:真题7:prim算法,时间复杂度为:O(n^2),n为图的顶点数。该算法的计算时间与图中的边数无关,所以,该算法适合边稠密的图的最小生成树。kruscal算法,时间
- 备战蓝桥杯---图论之最小生成树
CoCoa-Ck
图论算法蓝桥杯c++笔记
首先,什么是最小生成树?他就是无向图G中的所有生成树中树枝权值总和最小的。如何求?我们不妨采用以下的贪心策略:Prim算法(复杂度:(n+m)logm):我们对于把上述的点看成两个集合,一个是确定了最小生成树的点,一个还没有确定,我们只要不断把距离已经确定的集合的最短的边添加进去即可。假如我们加的距离不是最小的,那么当我们假设未确定的点已经构成了他们点的最小生成树,那么我们此时用距离最小的去添加他
- 最小生成树详解(Prim算法/Kruskal算法)
Stephen_Curry___
算法c++c语言数据结构图搜索算法
最小生成树⭐今天为大家带来的是最小生成树算法⭐在学习之前首先要搞清楚什么是最小生成树?给定一张边带权的无向图G=(V,E),其中V表示途中点的集合,E表示途中边的集合,=|V|,m=|E|。由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的以可生成树,其中边的权重之和最小被称为无向图G的最小生成树。所以最小生成树是用来计算最小边权问题。⭐最小生成树最常用的有两种算法:Prim算法(解
- 学习总结16
GGJJM
学习
#【模板】最小生成树##题目描述如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出`orz`。##输入格式第一行包含两个整数N,M,表示该图共有N个结点和M条无向边。接下来M行每行包含三个整数Xi,Yi,Zi,表示有一条长度为Zi的无向边连接结点Xi,Yi。##输出格式如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出`orz`。##样例#1###样例输入#
- 2.13学习总结
啊这泪目了
学习
1.出差(Bleeman—ford)(spfa)(dijkstra)2.最小生成树(prim)(Kruskal)最短路问题:出差https://www.luogu.com.cn/problem/P8802题目描述AA国有�N个城市,编号为1…�1…N小明是编号为11的城市中一家公司的员工,今天突然接到了上级通知需要去编号为�N的城市出差。由于疫情原因,很多直达的交通方式暂时关闭,小明无法乘坐飞机直
- 挑战程序设计竞赛最小生成树习题(4道)及详解:C++实现
新西兰做的饭
图论挑战程序设计竞赛图论kruskalprim算法c++
最小生成树POJ1258:Agri-NetPOJ2377:BadCowtractorsPOJ2395:OutofHayAOJ2224:Saveyourcats这四道题比较基本,没有过多复杂的过程,所以整合在一篇博客,适合学过最小生成树算法后来加深理解POJ1258:Agri-Net点击进入题面最小生成树模板题,输入为图的邻接矩阵,所以优先考虑prim算法:#include#includeusing
- 算法导论23章最小生成树习题—23.2练习
之墨_
算法算法最小生成树
23.2-1对于同一个输人图,Kruskal算法返回的最小生成树可以不同。这种不同来源于对边进行排序时,对权重相同的边进行的不同处理。证明:对于图G的每棵最小生成树T,都存在一种办法来对G的边进行排序,使得Kruskal算法所返回的最小生成树就是T。假设我们想选择T作为最小生成树。然后,为了使用Kruskal算法获得此树,我们将首先按边的权重对边进行排序,然后通过选取包含在最小生成树中的一条边来解
- 生成树(习题)
白色的风扇
算法
模板】最小生成树生成树有两种方法,但是我只会克鲁斯卡尔算法,所以接下来下面的的题目都是按照这个算法来实现的,首先来见一下生么是这个算法,在之前的我写的一篇博客中有题使叫修复公路,其实这一题就是使用了这个算法:用一个结构体记录两个区域的编号,和着两条区域之间道路的价值,再利用sort(排序函数)按照从小到大进行排序(有些题目要按照从大到小进行排序),利用并查集将各个区域进链接,直到所有区域都链接起来
- Python使用kruskal算法实现最小生成树
X Y sawyer
网络python算法
假如有多台计算机组成的局域网,不同计算机之间是使用光纤来连接的,如果把计算机看成是一个简单的节点,连接计算机的光纤看成是一条边,那这个局域网就可以抽象成为一个无向图:添加图片注释,不超过140字(可选)而对于这个图中的每个圆圈代表的是一个计算机,直线代表的是计算机之间的光纤连接,直线上的数字表示维护该条光纤所需要付出的成本,那现在需要降低维护成本,希望在不同计算机能够相互通信的基础上,去掉不必要的
- 克鲁斯卡尔(Kruskal)算法与普里姆(Prim)算法求最小生成树
ZYT_庄彦涛
数据结构算法算法Kruskal算法Prim算法
求下面带权图的最小(代价)生成树时,可能是克鲁斯卡尔(Kruskal)算法第2次选中但不是普里姆(Prim)算法(从v4开始)第2次选中的边是()。A.(v₁,v₃)B.(v₁,v₄)C.(v₂,v₃)D.(v₃,v₄)首先,认识什么是克鲁斯卡尔Kruskal算法和普里姆Prim算法↓克鲁斯卡尔Kruskal算法在整个过程中都是选取网中权值为最小的边克鲁斯卡尔算法是一个使网中所有顶点相连通而所需边
- 【第二十三课】最小生成树:prime 和 kruskal 算法(acwing858,859 / c++代码 )
爱写文章的小w
算法--学习笔记算法图论c++
目录前言Prime算法--加点法acwing-858代码如下一些解释Kruskal算法--加边法acwing-859并查集与克鲁斯卡尔求最小生成树代码如下一些解释前言之前学最短路的时候,我们都是以有向图为基础的,当时我们提到如果是无向图,只要记得两个顶点处都要加边就好了。而在最小生成树的问题中,我们所面临的大多都是无向图。这个姐姐对这两种算法的讲解非常清晰,没有代码部分,但是对于理解这两种算法的做
- 图(高阶数据结构)
GG_Bond20
数据结构数据结构算法c++
目录一、图的基本概念二、图的存储结构2.1邻接矩阵2.2邻接表三、图的遍历3.1广度优先遍历3.2深度优先遍历四、最小生成树4.1Kruskal算法4.2Prim算法五、最短路径5.1单源最短路径-Dijkstra算法5.2单源最短路径-Bellman-Ford算法5.3多源最短路径-Floyd-Warshall算法一、图的基本概念图是由顶点集合和边的集合组成的一种数据结构,记作有向图与无向图在有
- 力扣刷题之旅:高阶篇(四)—— 最小生成树算法
GT开发算法工程师
算法leetcode图论python数据结构职场和发展
力扣(LeetCode)是一个在线编程平台,主要用于帮助程序员提升算法和数据结构方面的能力。以下是一些力扣上的入门题目,以及它们的解题代码。引言:在算法领域中,图论是一个重要且有趣的分支,而最小生成树问题则是图论中的一个经典问题。最小生成树算法用于在一个连通的加权无向图中找到一棵边权值之和最小的生成树。在实际应用中,最小生成树算法常用于网络设计、电路设计等领域。一、最小生成树算法简介最小生成树算法
- 图论 理论以及相关题目题解的小结
芋圆西米露
【图论】吸吸吸国宝镇帖目录【图论】理论题解【搜索】【并查集】【最小生成树】【最短路】【拓扑排序】【二叉树】【简单图】【最小割】理论图论入门一图论入门二图论入门三图论入门四图论入门五图论入门六图论入门七-最小生成树图论入门八-Kruskal算法图论入门九-Prim算法求最短路径的四种方法(Dijkstra,Floyd,Bellman-Ford,SPFA算法)并查集入门(普通并查集+带删除并查集+关系
- 第三章 搜索与图论(三)(最小生成树,二分图)
一只程序媛li
蓝桥准备图论算法
一、最小生成树算法稠密图使用prim算法,稀疏图使用kruskal算法二、prim算法求最小生成树prim和dijkstra算法类似,都是找到符合某种条件的点,然后更新。prim使用到已经构成的部分最小树所有结点中最小的距离。dijkstra算法是使用到起点最小的距离。#include//858prim最小生成树(稠密图做法)usingnamespacestd;constintN=210,INF=
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep