- 数据结构与算法领域贪心算法的深度剖析
AI天才研究院
ChatGPT实战计算AgenticAI实战贪心算法算法ai
数据结构与算法领域贪心算法的深度剖析关键词:贪心算法、最优子结构、贪心选择性质、动态规划、贪心策略、时间复杂度、算法设计摘要:本文从贪心算法的核心概念出发,系统剖析其数学原理、算法设计模式及工程实践方法。通过对比贪心算法与动态规划的差异,揭示贪心选择性质和最优子结构的本质联系。结合活动选择、最小生成树、最短路径等经典案例,详细阐述贪心策略的构建过程与正确性证明方法。最后通过工业级项目实战,展示贪心
- 最小生成树算法的解题思路与 C++ 算法应用
Aobing_peterJr
OI算法分析算法c++
一、最小生成树算法针对问题类型及概述先来简要陈述一下树的概念:一个由NNN个点和N−1N-1N−1条边组成的无向连通图。由此,我们可以得知生成树算法的概念:在一个NNN个点的图中找出一个由N−1N-1N−1条边组成的树。具体来说,我们是在一个图G(N,M)G(N,M)G(N,M)中找到一个生成树G(N,N−1)G(N,N-1)G(N,N−1),在生成树G(N,N−1)G(N,N-1)G(N,N−1
- 贪心算法详解:理解贪心算法看这一篇就够了
爪哇学长
Java编程基础及进阶贪心算法算法javapython
文章目录1.贪心算法的基础理论1.1什么是贪心选择性质1.2证明贪心选择性质2.设计步骤2.1定义问题和目标2.2确定数据结构2.3排序和选择策略2.4迭代与决策2.5终止条件3.实例详解3.1活动选择问题3.2分数背包问题3.3最小生成树(Kruskal算法)1.贪心算法的基础理论1.1什么是贪心选择性质贪心选择性质是指一个全局最优解可以通过一系列局部最优的选择构建出来。这意味着在做出每个选择时
- 计算机数据结构图知识点,2011考研计算机数据结构复习重点解析:图的应用
夏欢Vivian
计算机数据结构图知识点
图是数据结构科目中难度最大的重点章节,在这两年的考试中也作为重点来考查。图这部分内容概念多、算法多、难度大。这就需要大家深刻理解每个知识点,多做练习,抓住规律,才能很好地解答这部分试题。图这部分要求大家掌握图的定义、特点、存储结构、遍历、图的基本应用等内容。图这部分的重点和难点是图的基本应用,这在09年和10年的考试中有所体现。图的基本应用包括:最小生成树、最短路径、拓扑排序、关键路径等。09年考
- 贪心算法经典问题
弥彦_
c++算法c++
目录贪心思想一、Dijkstra最短路问题问题描述:贪心策略:二、Prim和Kruskal最小生成树问题Prim算法:Kruskal算法:三、Huffman树问题问题描述:贪心策略:四、背包问题问题描述:贪心策略:五、硬币找零问题问题描述:贪心策略:六、区间合并问题问题描述:贪心策略:七、选择不相交区间问题问题描述:贪心策略:八、区间选点问题问题描述贪心策略九、区间覆盖问题问题描述:贪心策略:十、
- 大厂机试题解法笔记大纲+按知识点分类+算法编码训练
二分法部门人力分配数据最节约的备份方法项目排期食堂供餐矩阵匹配书籍叠放爱吃蟠桃的孙悟空深度优先搜索(DFS)欢乐的周末寻找最大价值矿堆可组成网络的服务器连续出牌数量图像物体的边界核算检测启动多任务排序无向图染色广度优先搜索(BFS)欢乐的周末快递员的烦恼亲子学习跳马启动多任务排序电脑病毒感染图5G网络建设(最小生成树)城市聚集度问题(树形DP、并查集)电脑病毒感染(Dijkstra算法)启动多任务
- Prim算法实现 -- 结合优先级队列
NLP_wendi
数据结构与算法Prim算法
什么是Prim算法?classPrim2:"""P算法最小生成树算法MSTMinimalSpanningTree保证整个拓扑图的所有路径之和最小"""def__init__(self,graph):n=len(graph)#存放横切边self.min_heap=[]#类似于visited数组,记录节点是否在mst中self.inMst=[False]*nself.weightSum=0#三元组se
- 数据结构——图(c)
阿笙_1202
数据结构图论数据结构算法
数据结构——图(c)文章目录数据结构——图(c)一、基本概念和术语1.图2.图的分类3.相关定义4.几种特殊形态的图二、图的存储结构1.邻接矩阵(顺序存储)2.邻接表(顺序+链式存储)3.十字链表-存储有向图4.邻接多重表-存储无向图5.邻接矩阵与邻接表对比三、图的基本操作四、图的遍历1.深度优先搜索(DFS)-辅助栈2.广度优先搜素(BFS)-辅助队列五、图的应用1-最小生成树0.最小代价生成树
- 贪心算法题实战详解
极致人生-010
贪心算法算法
文章目录例题1:活动安排问题例题2:货币找零问题例题3:分数背包问题(部分背包问题)例题4:最小生成树问题(Prim算法)例题5:哈夫曼编码例题6:活动选择问题例题7:硬币找零问题贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(局部最优)的选择,以期望通过一系列局部最优决策达到全局最优解的算法。请注意,贪心算法并不总是能得到全局最优解,但在某些特定问题上非常有效。下面通过几个实战例题来详
- Minimum/Maximum Spanning Tree/Forest
Razhme
算法初步系列
MST问题。对于一个有权无向图,使其原有连通块保持连通性并形成树,同时边权之和最小。换一种说法,最小生成树或者最小生成森林。两个算法一个推论。Kruskal'sAlgorithm基于贪心。将边排序,从最短边开始,若添加了此边,两个不相连的连通块相连了,就添加,否则看下一条。添加到边数为点数-1为止。用并查集检验是否连通。注意Kruskal的原理为,对于图中任意一个点x,对于x点连出去的所有边,边权
- 数据结构与算法学习笔记----Kruskal算法
明月清了个风
数据结构与算法笔记(基础课)算法学习笔记
数据结构与算法学习笔记----Kruskal算法@@author:明月清了个风@@firstpublishtime:2024.12.21ps⭐️这也是一个思想比较简单的算法,只写了基本思想,具体的可以看代码理解一下Kruskal算法Kruskal算法同样是一种基于贪心策略的最小生成树求解算法,另一种是上一篇中的Prim算法。基本思想将所有的边按边长从小到大排序。遍历所有边,判断每条边所连接的两个节
- 图论基础:广度优先搜索与深度优先搜索
夏曦安
图论广度优先搜索深度优先搜索最小生成树算法
图论基础:广度优先搜索与深度优先搜索图论作为计算机科学中重要的数学分支,广泛应用于网络流、最短路径、网络设计等领域。在图论的世界中,图的遍历是基础中的基础,它涉及到许多图算法的设计和实现。本文将重点探讨两种基础的图遍历算法——广度优先搜索(BFS)和深度优先搜索(DFS),以及最小生成树(MST)的相关算法。广度优先搜索(BFS)广度优先搜索是图遍历的一种方法,它从图中的一个顶点开始,尽可能宽广地
- ruskal 最小生成树算法
19要加油
算法
https://www.lanqiao.cn/problems/17138/learning/并查集+ruskal最小生成树算法Kruskal算法是一种用于在加权无向连通图中寻找最小生成树(MST)的经典算法。其核心思想是基于贪心策略,通过按边权从小到大排序并逐步选择边,确保最终形成的树满足以下条件:包含图中所有顶点(即生成树)。边权之和最小(即最小性)。不形成环路(确保是树结构)。算法步骤排序边
- Leetcode刷题 | Day61_图论07
freyazzr
leetcode图论算法数据结构c++
一、学习任务最小生成树——prim算法代码随想录最小生成树——kruskal算法代码随想录Kruskal与prim的关键区别在于,prim维护的是节点的集合,而Kruskal维护的是边的集合。在节点数量固定的情况下,图中的边越少,Kruskal需要遍历的边也就越少。而prim算法是对节点进行操作的,节点数量越少,prim算法效率就越优。边数量较少为稀疏图,接近或等于完全图(所有节点皆相连)为稠密图
- 软考高级《系统架构设计师》知识点(十八)
Ritchie:)
数学与经济管理图论应用最小生成树有两种方法:普里姆算法和克鲁斯卡尔算法,实际计算建议采用克鲁斯卡尔算法。克鲁斯卡尔算法:将图中所有的边按权值从小到大排序,从权值最小的边开始选取,判断是否为安全边(即不构成环),直至选取了n-1条边,构成了最小生成树。最小生成树并不唯一,但权值之和都相等且最小,只要求出一个就可以。最短路径计算从起点到终点的最短路径,注意与关键路径截然相反,不要混淆。方法:从起点开始
- Java语言常用的算法
TPBoreas
算法java算法开发语言
Java语言常用的算法包括:排序算法:冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序等。查找算法:顺序查找、二分查找、哈希查找等。字符串匹配算法:暴力匹配、KMP算法、Boyer-Moore算法等。图论算法:最短路径算法、最小生成树算法、拓扑排序等。动态规划算法:背包问题、最长公共子序列、最长上升子序列等。贪心算法:最小生成树、单源最短路径等。分治算法:快速排序、归并排序等。网
- 搜索与图论--Floyd/Prim/Kruskal
Spike_Q
算法学习图论算法数据结构c++
目录1.Floyd求最短路输入格式输出格式数据范围输入样例:输出样例:代码展示:2.Prim算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:3.Kruskal算法求最小生成树输入格式输出格式数据范围输入样例:输出样例:代码展示:WATER~1.Floyd求最短路给定一个n个点m条边的有向图,图中可能存在重边和自环,边权可能为负数。再给定k个询问,每个询问包含两个整数x和y,表
- 普利姆算法-最短路径问题
南方下小雨
算法数据结构
packagedemo28;importjava.util.Arrays;//普利姆算法解决最小生成树问题publicclasssmallTree{publicstaticvoidmain(String[]args){char[]data=newchar[]{'A','B','C','D','E','F','G'};intverx=data.length;int[][]weight=newint[
- 2025年第十六届蓝桥杯省赛B组Java题解【完整、易懂版】
大熊计算机
赛事/证书蓝桥杯java职场和发展
2025年第十六届蓝桥杯省赛B组Java题解题型概览与整体分析题目编号题目名称题型难度核心知识点通过率(预估)A逃离高塔结果填空★☆☆数学规律、模运算95%B消失的蓝宝结果填空★★★同余定理、中国剩余定理45%C电池分组编程题★★☆异或运算性质70%D魔法科考试编程题★★★素数筛、集合去重60%E爆破编程题★★★☆最小生成树、几何计算40%F数组翻转编程题★★☆贪心、数学分析55%G移动距离结果填
- 算法笔记.kruskal算法求最小生成树
xin007hoyo
算法笔记图论
题目:(来源:AcWing)给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的
- 算法笔记.prim算法
xin007hoyo
算法笔记图论
题目:给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。给定一张边带权的无向图G=(V,E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。由V中的全部n个顶点和E中n−1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。输入格式第
- 青少年编程与数学 02-018 C++数据结构与算法 16课题、贪心算法
明月看潮生
编程与数学第02阶段青少年编程c++贪心算法编程与数学算法
青少年编程与数学02-018C++数据结构与算法16课题、贪心算法一、贪心算法的基本概念定义组成部分二、贪心算法的工作原理三、贪心算法的优点四、贪心算法的缺点五、贪心算法的应用实例(一)找零问题问题描述:贪心策略:示例代码:解释:(二)活动安排问题问题描述:贪心策略:示例代码:解释:(三)霍夫曼编码问题描述:贪心策略:示例代码:解释:(四)最小生成树(Kruskal算法)问题描述:贪心策略:示例代
- C++ 解决一个简单的图论问题 —— 最小生成树(以 Prim 算法为例)
potato_potato_123
C/C++算法图论最小生成树prim算法
使用C++解决一个简单的图论问题——最小生成树(以Prim算法为例),并且使用Graphviz库来生成结果图。在图论中,“边权之和最小”是最小生成树(MST)的核心目标,其含义和背景可以从以下几个方面解释:一、基础定义:什么是“边权之和”?边权:图中每条边的权重(Weight),可以代表实际问题中的成本、距离、时间、容量等量化指标。边权之和:对于一个子图(如生成树),将其中所有边的权重相加得到的总
- 算法设计与分析7(贪心算法)
songx_99
算法设计与分析算法
Prim算法(寻找最小生成树)用途:Prim算法是一种贪心算法,用于在加权无向图中寻找最小生成树(MST),即能够连接图中所有顶点且边的权重之和最小的子图。基本思路:从图中任意一个顶点v开始,将其加入到最小生成树的顶点集合S中。不断从与S中顶点相邻的边中选择一条权重最小的边,将这条边连接的另一个顶点加入到S中。重复上述步骤,直到图中所有顶点都被加入到S中,此时得到的子图就是最小生成树。Dijkst
- kuangbin 最小生成树专题 - POJ - 2421 Constructing Roads (朴素 Prim算法 模板题)
会划水才能到达彼岸
最小生成树专题kuangbin题单算法图论c++数据结构树结构
kuangbin最小生成树专题-POJ-2421ConstructingRoads(朴素Prim算法模板题)英文版Clickhere~~意译版Clickhere~~总题单week3[kuangbin带你飞]题单最小生成树+线段树Clickhere~~https://blog.csdn.net/m0_46272108/article/details/108980362英文版Clickhere~~De
- Objective-C实现prim普里姆算法(附完整源码)
源代码大师
objective-c算法ios
Objective-C实现prim普里姆算法Prim算法是一种用于寻找加权无向图的最小生成树(MinimumSpanningTree,MST)的贪心算法。它的基本思路是从一个起始节点开始,逐步将最小边加入到生成树中,直到所有节点都被包括在内。下面是一个使用Objective-C实现Prim算法的完整源码示例。Objective-C完整源码#import@interfaceGraph:NSObjec
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
avq94452
javac/c++
转载自——》https://www.cnblogs.com/ninedream/p/11203704.html最小生成树:一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点,并且有保持图连通的最少的边。简单来说就是有且仅有n个点n-1条边的连通图。而最小生成树就是最小权重生成树的简称,即所有边的权值之和最小的生成树。最小生成树问题一般有以下两种求解方式。一、Prim算法
- 图的最小生成树--Prim算法与Kruskal算法
MinBadGuy
数据结构与算法图论primkruskal
1.相关概念1.1生成树概念所谓一个图的生成树是一个极小连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。从上述定义可知,如果一个图有n个顶点和小于n-1条边,则是非连通图,如果它多余n-1条边,必定构成一个环。注意:(1)一个图可以有多棵不同的生成树;(2)具有n-1条边并不一定是生成树。1.2最小生成树给定一个连通网,在该往的所有生成树中,使得各边权值之和最小的那棵生成树称
- 图论---Kruskal(稀疏图)
快乐的小涵
图论c++算法数据结构
O(m*logn)。1,将所有边按权重从小到大排序,调用系统的sort()2,枚举每条边的a,b,权重if(a、b不联通)就将这条边加入集合中//最小生成树—Kruskal算法(稀疏图)#include#includeusingnamespacestd;constintN=200010;intn,m;intp[N];//并查集中的p数组structEdge{inta,b,w;//重载>n>>m;f
- 图论应用解析:从Dijkstra到Floyd算法
健康和谐男哥
图论最短路径Dijkstra算法Floyd算法算法优化
图论应用解析:从Dijkstra到Floyd算法背景简介在计算机科学领域,图的应用无处不在,尤其是在解决最短路径问题上。第7章深入讲解了图论中的一些经典应用,包括最短路径、最小生成树、拓扑排序和关键路径等。本篇博文将重点解读最短路径问题中的两个重要算法——Dijkstra算法和Floyd算法。最短路径问题的Dijkstra算法算法简介Dijkstra算法是由荷兰计算机科学家迪科斯彻提出的,旨在解决
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr