多么明显的半平面交。
答案一定在山的顶点处或者半平面交区域的顶点处。。
1 #include <iostream> 2 #include <cstring> 3 #include <cstdlib> 4 #include <cstdio> 5 #include <algorithm> 6 7 #define N 555 8 #define EPS 1e-7 9 #define INF 1e12 10 11 using namespace std; 12 13 struct PO 14 { 15 double x,y; 16 void prt() {printf("%lf %lf\n",x,y);} 17 }p[N],tp[N],s[N]; 18 19 int n,m; 20 21 inline PO operator +(PO a,PO b) 22 { 23 a.x+=b.x; a.y+=b.y; 24 return a; 25 } 26 27 inline PO operator -(PO a,PO b) 28 { 29 a.x-=b.x; a.y-=b.y; 30 return a; 31 } 32 33 inline PO operator *(PO a,double k) 34 { 35 a.x*=k; a.y*=k; 36 return a; 37 } 38 39 inline PO operator /(PO a,double k) 40 { 41 a.x/=k; a.y/=k; 42 return a; 43 } 44 45 inline int dc(double x) 46 { 47 if(x>EPS) return 1; 48 else if(x<-EPS) return -1; 49 return 0; 50 } 51 52 inline double cross(const PO &a,const PO &b,const PO &c) 53 { 54 return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y); 55 } 56 57 inline double dot(const PO &a,const PO &b,const PO &c) 58 { 59 return (b.x-a.x)*(c.x-a.x)+(b.y-a.y)*(c.y-a.y); 60 } 61 62 inline PO getpoint(const PO &a,const PO &b,const PO &c,const PO &d) 63 { 64 double k1=cross(a,d,c),k2=cross(b,c,d); 65 return a+(b-a)*k1/(k1+k2); 66 } 67 68 inline bool onseg(const PO &a,const PO &b,const PO &c) 69 { 70 if(dc(dot(a,b,c))<=0) return true; 71 return false; 72 } 73 74 inline void read() 75 { 76 scanf("%d",&n); 77 for(int i=1;i<=n;i++) scanf("%lf",&p[i].x); 78 for(int i=1;i<=n;i++) scanf("%lf",&p[i].y); 79 } 80 81 inline void getcut() 82 { 83 tp[1].x=tp[5].x=-INF; tp[1].y=tp[5].y=-INF; 84 tp[2].x=INF,tp[2].y=-INF; 85 tp[3].x=INF,tp[3].y=INF; 86 tp[4].x=-INF,tp[4].y=INF; 87 int cp=4,tc; 88 for(int i=1;i<n;i++) 89 { 90 tc=0; 91 for(int j=1;j<=cp;j++) 92 { 93 if(dc(cross(p[i],p[i+1],tp[j]))>=0) s[++tc]=tp[j]; 94 if(dc(cross(p[i],p[i+1],tp[j])*cross(p[i],p[i+1],tp[j+1]))<0) 95 s[++tc]=getpoint(p[i],p[i+1],tp[j],tp[j+1]); 96 } 97 s[tc+1]=s[1]; 98 for(int j=1;j<=tc+1;j++) tp[j]=s[j]; 99 cp=tc; 100 } 101 m=cp; 102 } 103 104 inline void go() 105 { 106 getcut(); 107 double ans=INF; 108 PO s1,t1,jd; 109 for(int i=1;i<=n;i++) 110 { 111 s1=p[i]; t1.x=s1.x,t1.y=520.1314; 112 for(int j=1;j<=m;j++) 113 { 114 jd=getpoint(s1,t1,s[j],s[j+1]); 115 if(onseg(jd,s[j],s[j+1])) ans=min(ans,jd.y-p[i].y); 116 } 117 } 118 for(int i=1;i<=m;i++) 119 { 120 s1=s[i]; t1.x=s[i].x; t1.y=520.1314; 121 for(int j=1;j<n;j++) 122 { 123 jd=getpoint(s1,t1,p[j],p[j+1]); 124 if(onseg(jd,p[j],p[j+1])) ans=min(ans,s[i].y-jd.y); 125 } 126 } 127 printf("%.3lf\n",ans); 128 } 129 130 int main() 131 { 132 read(),go(); 133 return 0; 134 }