- 简易区块链的搭建(3)——交易
Hock2024
golang区块链的构建区块链golang
背景知识1.UTXO账户模型产生背景:为了解决第一类双花问题(一笔钱花两次)原理介绍:我们先来介绍传统的金融模式,你有10元存款,想转给我3元,银行会怎么操作?很显然,他会将你的账户减3元,将我的账户加3元。这种交易模式记录的是交易结果而UTXO账户模型记录的是交易过程下面是简单的例子:还拿上述例子,你给我转账10元,那么这个机制会做出如下记录:初始状态:你的账户有10元,由一个未花费交易输出(U
- 区块链知识总结——POS权益证明
The_Killer.
区块链
背景:pow由于其对资源的消耗而饱受争议。由此引入pos权益证明:posVSpow优缺点:1.节能2.pos是闭环生态,pow是开源生态。pos天然防范了51%攻击解释:pow之下,attacker可以在现实世界中购买矿机,来增加算力以达到51%attack目的,而pos下attacker必须购买更多的加密货币(相当于成为股东),才有发动attack的能力,但此时对币的开发者和早起的矿工其实是受益
- BaiduSitemap - Typecho站点地图生成与多搜索引擎推送插件
独立开发者阿乐
原创javascript云计算自动化大数据数据分析
文章目录BaiduSitemap-Typecho站点地图生成与多搜索引擎推送插件✨功能特点插件架构核心模块文件结构安装方法方法一:手动安装方法二:Git克隆⚙️配置说明站点地图基本设置搜索引擎配置百度搜索引擎必应(Bing)搜索引擎谷歌(Google)搜索引擎使用指南站点地图访问手动操作站点地图包含内容高级功能图片索引优化推送状态监控技术实现详解站点地图生成流程搜索引擎推送机制缓存机制❓常见问题站
- 基于Spring Boot的网络购物商城的设计与实现
代论文网课招代理
springboot后端java
目录摘要:IAbstract:II第1章系统分析11.1系统概述11.2系统可行性分析11.2.1技术可行性分析11.2.2经济可行性分析11.2.3社会可行性分析11.3需求分析21.2.1业务角色分析21.2.2用例分析3第2章系统设计42.1功能模块设计42.2功能流程设计52.2.1商品加入购物车流程52.2.2用户下单流程62.3数据库设计72.3.1数据库E-R设计72.3.2数据表设
- 实现make_power_of_two函数
洞阳
c++面试c++
目录代码make_power_of_two函数解析:将数值转换为大于等于它的最小2的幂一、函数功能与核心逻辑二、代码实现与逐行解析三、逐步骤原理解析四、位运算的数学原理五、不同输入的转换示例六、算法复杂度与适用场景七、与其他实现方式的对比八、注意事项总结代码该函数将任意n转换为大于等于n的最小2的幂(如n=10→16,n=16→16)size_tmake_power_of_two(size_tn)
- AIGC领域Prompt工程:原理、方法与行业应用
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCpromptai
AIGC领域Prompt工程:原理、方法与行业应用关键词:Prompt工程、大语言模型(LLM)、提示设计、少样本学习、AIGC应用、思维链(CoT)、提示优化摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,大语言模型(如GPT-4、LLaMA、通义千问)的性能已达到前所未有的高度。然而,模型的强大能力能否被充分释放,很大程度上依赖于"提示(Prompt)"的设计质量。本文系统解析Prom
- Spring AI 中 MCP 架构与工具调用技术详解
小W求学之旅
springmcpspringaiagent
这篇文章主要是概述MCP是什么,SpringAI如何结合它。如果想要了解如何搭建spring工程并结合MCP开发,可以看我的另外一篇:SpringAI+MCP最详细实践:从配置开始到服务搭建(踩坑无数版)一、MCP架构概述MCP(MessageCommunicationProtocol)是SpringAI用于支持AI模型交互的消息通信协议,在客户端与服务端之间搭建桥梁,支持多种传输层协议,提供标准
- 具身智能基础
frostmelody
人工智能
1.MuJoCo:高保真物理仿真的核心引擎技术本质定义:MuJoCo(Multi-JointDynamicswithContact)是由EmoTodorov开发的物理仿真引擎,专注于多关节系统接触动力学的高效计算。核心突破:约束动力学模型:采用约束优化(而非传统弹簧阻尼模型)模拟物体接触,避免穿透和数值不稳定(公式:min12q˙TMq˙+q˙Tf\text{min}\frac{1}{2}\dot
- 大语言模型中的思维链提示:解锁高效互动的秘密
t0_54program
大数据与人工智能语言模型人工智能自然语言处理个人开发
在当今的人工智能领域,大语言模型(LLMs)已然成为一颗耀眼的明星,它经过海量训练,能够理解并生成人类语言,在编程等诸多领域助力人们完成日常任务。然而,若想与这些模型实现高效沟通,掌握正确的请求方式至关重要,而思维链提示(Chainofthoughtprompting)便是与LLMs互动时最为高效的技术之一。什么是提示(Prompting)?LLMs基于海量数据集进行训练,以理解并生成类人文本。其
- React中的ErrorBoundary
TE-茶叶蛋
reactreact.jsjavascript前端
文章目录前言✅一、使用类组件实现ErrorBoundary(官方推荐方式)用法示例:✅二、用函数组件实现ErrorBoundary(借助Hook+`react-error-boundary`库)1.安装`react-error-boundary`2.使用`ErrorBoundary`组件(函数方式)✅三、手写Hook模拟捕获运行时异常(局限性较大)✅总结对比前言在React中,ErrorBound
- NB-IoT协议深度解析与应用实践.zip
豪欧巴
本文还有配套的精品资源,点击获取简介:NB-IoT(窄带物联网)是针对LPWAN(低功耗广域网络)领域设计的物联网技术,其特点是覆盖广泛、功耗低、设备连接能力强。技术概述包括了NB-IoT的技术目标和特点,如深度覆盖、高效节能、大连接能力及低成本。核心特性涵盖了物理层、媒介接入控制层、网络层、会话层以及应用层的协议栈分析。此外,还介绍了NB-IoT的部署模式,以及在智慧城市、智能表计、资产追踪、农
- 【数据标注师】拼音和停顿标注
试着
数据标注师数据标注师拼音和停顿标注
目录一、任务本质与技术价值**标注双核心目标****应用场景**二、专业工作环境配置**硬件三件套****软件生态**三、拼音标注深度指南**标注规范体系(GB/T16159-2012)****特殊场景处理**四、停顿标注核心技术**韵律层级体系****标注规范(ToBI标准扩展)****实操技巧**五、全流程标注实战**联合标注示例****复杂场景处理**六、质量与效率管控**错误预防清单***
- 【数据标注师】语音切割转写
试着
数据标注师数据标注师语音切割转写
目录**一、语音标注任务解析****任务类型矩阵****核心挑战****二、硬件与工具准备****专业级工作环境配置****必备工具掌握****三、核心技能深度训练****模块1:精准切割技术****模块2:专业级听辨能力****模块3:转写规范体系****四、复杂场景攻坚策略****场景1:多人对话分割****场景2:专业领域转写****五、质量与效率双提升****质检避错清单****效率提升方
- OA门户网站方案,含经典必要功能
Alex艾力的IT数字空间
jenkins运维架构数据库微服务java单元测试
一、核心功能模块设计新手引导系统功能设计:分步引导:采用蒙层+气泡提示形式,按用户角色(如新员工、管理员)动态展示核心功能路径(如流程提交、知识检索)。场景化教学:嵌入交互式流程演示(如审批流程模拟),支持用户实时操作练习。进度跟踪:记录用户完成状态,未完成引导时在首页置顶提示。技术实现:基于Vue3的动态路由配置,结合用户行为分析(如点击热区)优化引导路径。统一应用入口功能设计:智能导航栏:根据
- 图片元数据与防篡改技术指南
图片元数据与防篡改技术指南——从修改EXIF到数字签名,掌控图片的真实性—引言:数字世界的“隐形指纹”每张图片都携带元数据(EXIF),像数字世界的“隐形日记”,记录拍摄时间、设备甚至GPS位置。但这也带来隐私和篡改风险。本文将带你探索:如何编辑/删除EXIF(保护隐私或修正信息)如何用数字签名/区块链“锁定”图片(防伪、法律存证)开源工具vs商业方案(从命令行到一键操作)第一部分:EXIF修改术
- SELinux 从理论到实践:深入解析与实战指南
智驾
LinuxSELinuxTEELinux安全启动
文章目录引言:为什么需要SELinux?第一部分:SELinux核心理论1.1SELinux的三大核心模型1.2安全上下文(SecurityContext)1.3策略语言与模块化第二部分:实战操作指南2.1SELinux状态管理2.2文件上下文管理2.3服务配置与排错第三部分:高级技巧与最佳实践3.1自定义策略模块开发3.2常见问题与解决方案总结:SELinux的价值与学习路径参考引言:为什么需要
- 「Ant Design 组件库探索」一:整体结构+工程化设置
梦玄海
elasticsearch大数据搜索引擎
本篇文章是学习了整体结构以及工程化配置后的总结,所以内容很长,不用从头读到尾,请结合实际项目和兴趣点进行分节点阅读。AIIDE设置这里的IDE设置主要是针对cursor的,看得出来,cursor是非常的火,这个库也支持了;这个cursor的目录结构是这样的:.cursor/└──rules/├──demo.mdc├──docs.mdc├──git.mdc├──locale.mdc├──naming
- AI生成代码安全审计:从AST逆向到对抗样本生成
梦玄海
人工智能安全
引言随着Codex、Copilot等AI代码生成工具的普及,开发效率显著提升的同时,也引入了新型安全风险:模型生成的代码可能隐含漏洞(如SQL注入、XSS)、逻辑错误,或被恶意样本“投毒”。传统的静态扫描工具(如SonarQube)难以覆盖AI模型的上下文语义逻辑,亟需结合程序分析与AI对抗技术进行深度审计。本文将从AST逆向工程切入,深入探讨如何通过对抗样本检测AI生成代码的脆弱性。一、核心挑战
- 深入解析微信协议逆向:基于Go语言的手机号绑定功能实现
梦玄海
微信golangjava
引言在即时通讯系统开发领域,微信协议的逆向工程一直是一个充满挑战的技术方向。本文将基于一段真实的Go语言实现代码,深入剖析微信客户端绑定手机号功能的核心实现机制,解密其通信协议、数据序列化及安全传输等关键技术细节。一、功能概述与模块架构该代码片段实现了微信客户端的手机号绑定功能(BindOpMobile),主要包含以下技术模块:用户凭证管理:通过comm.GetLoginata获取会话密钥、设备信
- 揭秘MySQL索引下推(ICP)的底层原理与高并发场景性能调优
Minxinbb
数据库mysql数据库dba
引言在千万级数据量的OLTP场景中,索引下推(IndexConditionPushdown,ICP)作为MySQL5.6引入的核心优化技术,可将特定场景的查询性能提升10倍以上。本文将从InnoDB存储引擎的索引结构出发,结合B+树遍历原理,深入解析ICP的工作机制,并通过压力测试对比验证优化效果。一、索引下推的核心原理剖析1.1传统索引查询的瓶颈未启用ICP时的查询流程(以复合索引(a,b,c)
- 【数据标注师】目标跟踪标注
试着
数据标注师目标跟踪人工智能计算机视觉数据标注师目标跟踪标注
目录一、**目标跟踪标注的四大核心挑战**二、**五阶能力培养体系**▶**阶段1:基础规则内化(1-2周)**▶**阶段2:复杂场景处理技能**▶**阶段3:专业工具mastery**▶**阶段4:领域深度专精▶**阶段5:效率突破方案三、**精度控制五大核心技术**四、**质检与错误防御体系**1.**四维质检法**:2.**高频错误防御表**:五、**持续进阶体系**1.**复杂场景专项**
- 车联网网络安全渗透测试:深度解析与实践
ke0hly
web安全网络安全物联网安全架构安全威胁分析
引言随着汽车智能化、网联化程度的不断深入,车联网(IoV)已成为连接人、车、路、云的关键枢纽。然而,技术进步的同时也带来了前所未有的网络安全挑战。从车载系统到云端平台,从车内通信到V2X通信,车联网的每一个环节都可能成为潜在的攻击面,一旦被恶意利用,将直接威胁到驾乘人员的生命财产安全,甚至影响国家安全和公共秩序。因此,构建一套全面、深入、实战化的车联网网络安全渗透测试流程和方法,对于保障车联网的健
- 【项目实战】Redis使用场景之基于Redis实现分布式限流
本本本添哥
002-进阶开发能力003-数据库redis分布式数据库
一、技术概览1.1定义分布式限流是指在分布式系统中限制请求的速率,以保护后端服务不被过多的请求压垮。它可以帮助我们控制系统的负载,保证服务的稳定性。Redis是一个高性能的键值存储系统,常用于缓存、消息队列和实时分析等场景。由于其支持丰富的数据结构和原子操作,非常适合用来实现分布式限流。专业术语:令牌桶算法(TokenBucket):一种流量整形算法,允许突发流量但不超过平均速度。漏桶算法(Lea
- 基于Anaconda环境开发IntelliJ IDEA实用JSON转Java实体插件
七夜zippoe
后端#Javajavajsonintellij-idea
在软件开发中,将JSON数据转换为Java实体类是常见需求。借助Anaconda环境强大的包管理能力与IntelliJIDEA的插件开发体系,我们可以打造一款高效实用的JSON转Java实体插件,显著提升开发效率。下面将从需求分析、技术选型、开发实现到优化部署,全方位阐述这款插件的开发过程。需求分析:明确痛点与功能方向在日常开发中,开发者经常需要根据JSON数据结构手动创建对应的Java实体类,这
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 我的世界1.20.1forge模组开发进阶教程——序列化(1)
lemon_sjdk
java我的世界mcforge模组开发序列化
mc的序列化在《Minecraft》(MC)中,序列化指将游戏数据(如方块、实体、玩家状态等)转换为可存储或传输的格式。这是游戏运行、存档保存和网络通信的关键技术。以下是Minecraft中常见的序列化方式及其用途:一、序列化在Minecraft中的作用存档数据持久化将玩家建筑、地图、物品栏等数据保存到硬盘(如.minecraft/saves中的区域文件)。网络传输服务器与客户端同步方块更新、实体
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- 随机森林详解:原理、优势与应用实践
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能DecisionTree数据挖掘
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!随机森林介绍1.定义:随机森林是一种强大的、高度灵活的集成学习(EnsembleLearning)算法,主要用于分类和回归任务。它的核心思想是构建多棵决策树(DecisionTree),并将这些树的预测结果进行组合(例如,分类任务采用投票,回归任务采用
- 集成学习基础:Bagging 原理与应用
大千AI助手
人工智能Python#OTHER集成学习机器学习人工智能算法决策树Bagging
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!Bagging介绍1.定义与全称:Bagging是BootstrapAggregating的缩写,中文常译为装袋法。它是一种并行式的集成学习方法。核心目标是通过构建多个基学习器的预测结果进行组合(通常是投票或平均),来获得比单一基学习器更稳定、更准确、
- 经济学神图:洛伦兹曲线
大千AI助手
人工智能Python#OTHER决策树人工智能DecisionTree算法洛伦兹曲线基尼
洛伦兹曲线(LorenzCurve)是衡量社会收入或财富分配不平等程度的经典可视化工具,由美国统计学家马克斯·洛伦兹(MaxOttoLorenz)于1905年提出。它不仅是理解基尼系数的核心基础,也是经济学、社会学中分析资源分配公平性的关键图表。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号