- 数据挖掘导论——第七章:聚类
Wis4e
数据挖掘聚类人工智能
什么是聚类?数据间的相似性和距离的测量方式有哪些?数据标准化如何进行距离计算?层次聚类的思想和流程?K-均值聚类的思想和流程?距离的计算方式如何影响聚类结果?聚类的要素,包括数据,差异性/相似性测量方式,聚类算法(标准化执行程序或流程)理解相似性和差异性的度量(p40)。Jaccard和余弦相似性度量。以下内容由AI生成:余弦相似度(CosineSimilarity)是一种衡量两个向量在方向上相似
- 相似度计算
Panesle
python人工智能算法
1.余弦相似度计算(不区分向量方向,互换顺序也相同)sen_vec1=sbert.get_sentence_emb(context15)#向量化sen_vec1=sen_vec1*(1.0/(np.linalg.norm(sen_vec1)+0.00001))#normal化sen_vec2=sbert.get_sentence_emb(context14)#向量化sen_vec2=sen_vec
- 语义向量模型全解:从基础到现在的deepseek中的语义向量主流模型
来自于狂人
人工智能语言模型
一、语义向量模型:自然语言处理的基石语义向量模型(SemanticVectorModel)是自然语言处理(NLP)的核心技术,它将词汇、句子或文档映射为高维向量,在数学空间中量化语义信息。通过向量距离(如余弦相似度)衡量语义的相似性,支撑了搜索引擎、情感分析、机器翻译等实际应用。1.1发展简史1980s~2000s:基于统计的浅层模型,如TF-IDF(直接表征词的重要性)、LSA(通过矩阵分解降维
- 人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
- MATLAB之相似性度量的二分类实验
TU不秃头
#MATLABmatlab分类图像处理
实验内容将MIT室内场景数据库中卧室、浴室作为正负样本,利用留出法完成训练集与测试集的划分(比例1:2),并使用测量夹角余弦的方式进行二分类(0为负,1为正),最后给出分类错误率和准确率,并绘制ROC曲线。实验原理【余弦距离】也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。实验
- 【AI知识点】余弦相似度(Cosine Similarity)
AI完全体
AI知识点人工智能机器学习深度学习线性代数相似性比较自然语言处理向量的距离
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】余弦相似度(CosineSimilarity)是一种用于衡量两个向量在方向上的相似程度的指标。它主要用于文本分析、自然语言处理(NLP)、推荐系统等任务中,能够衡量两个向量之间的相似性,而不受向量的长度(模)影响。可对比点积相似性(dot-productsimilarity)来学习1.余弦相似度的定义余弦相似度通过计算两个向量之间的夹角的
- Springboot+vue.js+协同过滤推荐+余弦相似度算法实现新闻推荐系统
计算机程序优异哥
针对海量的新闻资讯数据,如何快速的根据用户的检索需要,完成符合用户阅读需求的新闻资讯推荐?本篇文章主要采用余弦相似度及基于用户协同过滤算法实现新闻推荐,通过余弦相似度算法完成针对不同新闻数据之间的相似性计算,实现分类标签。通过协同过滤算法发现具备相似阅读习惯的用户,展开个性化推荐。本次新闻推荐系统:主要包含技术:springboot,mybatis,mysql,javascript,vue.js,
- 基于用户的协同过滤以及ALS的混合召回算法
山水阳泉曲
算法机器学习人工智能矩阵python推荐算法线性代数
文章目录需求基于用户的协同过滤基本步骤相似度计算代码示例(使用余弦相似度)基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替最小二乘(AlternatingLeastSquares,ALS)结合起来,设计一个混合推荐系统。这种系统可以利用
- 余弦相似度算法和IntelliScraper
python人工智能
场景当时,我说要开发一个HSipder,开发完毕的时候,我发现不太智能,通过正则表达式拿过来的相似数据实际上也不太ok,但是后面我在接触机器学习的时候听闻了余弦相似度算法,当时用他爬了一些网页,结果是很ok的,于是我把HSipder项目拆了拆加入了余弦算法,我发现准确度上去了一个维度。很Nice,随机我将其发布到pypi库,并且开源,命名为IntelliScraper,意思是智能爬,也有人工智能的
- NLP_Bag-Of-Words(词袋模型)
you_are_my_sunshine*
NLP自然语言处理人工智能
文章目录词袋模型用词袋模型计算文本相似度1.构建实验语料库2.给句子分词3.创建词汇表4.生成词袋表示5.计算余弦相似度6.可视化余弦相似度词袋模型小结词袋模型词袋模型是一种简单的文本表示方法,也是自然语言处理的一个经典模型。它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次,如下图所示用词袋模型计算文本相似度1.构建实验语料库#构建一个数据集corpus=["我
- 数据挖掘——考试复习
hzx99
考试复习数据挖掘考试复习
数据挖掘——考试复习考点填空欧几里得距离余弦相似度简单匹配系数Jaccard系数数据集的ClassficationError数据集的Gini值召回率和精度问答支持向量机的“最大边缘”原理软边缘支持向量机的基本工作原理非线性支持向量机的基本工作原理计算朴素贝叶斯分类ID3决策树、计算数据集的熵、计算划分的期望信息、信息增益计算欧式距离、KNN分类给定事务数据集、求频繁K项集,求指定的关联规则的支持度
- 推荐系统算法实践 - P2 推荐系统的召回算法
左心Chris
4协同过滤-基于行为协同过滤算法协同过滤算法是什么?基于跟你类似的用户喜欢的东西,你也会喜欢基于跟你喜欢的东西类似的物品,你也会喜欢怎么体现类似的这个情景?同现相似度,欧几里得距离,皮尔逊相关系数,余弦相似度皮尔逊相关系数大小跟紧密程度的关系?皮尔逊相关系数[-1,1],绝对值越接近于1,越线性相关什么时候使用向量乘法,什么时候选择余弦相似度?如果向量的长度本身对相似有影响,建议使用内积,比如评分
- 我用Java写了一个协调过滤算法案例
还得是你大哥
java服务端java算法开发语言
协调过滤算法(CollaborativeFiltering)是一种基于用户行为数据的推荐算法。这里给出一个简单的Java实现案例,使用余弦相似度计算物品之间的相似度,并根据相似度为用户推荐物品。importjava.util.*;publicclassCollaborativeFiltering{publicstaticvoidmain(String[]args){//用户评分数据Map>user
- 【ChatGPT】文本向量化与余弦相似度:揭开文本处理的神秘面纱
魔道不误砍柴功
AI大模型chatgpt
1、引言在这个数字化的时代,我们每天都会面对大量的文本信息,从社交媒体到新闻报道,文本无处不在。但是,计算机要如何理解和处理这些文字呢?本文将为大家揭开其中的一些奥秘,详细解释文本向量化的概念,以及通过余弦相似度如何计算文本之间的相似度。说白了,就是把文字、图片或其他东西变成一串数字,然后通过计算这些数字的距离来找相似的东西。这样做有啥好处呢?能够让搜索更快、更准确,而且在很多地方都能派上用场。2
- DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)
毕设阿力
算法
DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的
- 【Python3】计算两个字符串的相似度
言之。
python
在Python中,你可以使用不同的算法和库来计算两个字符串的相似度。这里介绍两种常用的方法:编辑距离和余弦相似度。1.编辑距离(EditDistance):编辑距离是衡量两个字符串之间的差异程度的一种度量方式。在Python中,可以使用编辑距离算法来计算两个字符串之间的相似度。可以使用python-Levenshtein库来实现。首先,你需要安装python-Levenshtein库:pipins
- 文本相似度计算
Logan_addoil
python大数据学习之旅python
相似度度量:计算个体间相似度相似度值越小,距离越大,相似度越大,距离越小余弦相似度:一个向量空间中两个向量夹角的余弦值作为衡量两个个体之间差异的大小余弦值接近1,夹角趋于0,表明两个向量越相似例如:文本相似度计算1.找出两篇文章的关键词2.每篇文章各取出若干关键词,合并成一个集合,计算每篇文章对于这个词的词频3.生成两篇文章各自的词频向量4.计算两个向量的余弦相似度,值越大就表示越相似import
- 余弦距离和余弦相似度的区别
weixin_44040169
算法机器学习人工智能
余弦相似度,就是计算两个向量间的夹角的余弦值:cosθ,取值范围[-1,1]。值越大,相似度越高余弦距离就是用1减去这个获得的余弦相似度:1-cosθ,取值范围[0,2]。值越大,距离越远。余弦距离和欧氏距离一样都可以用来衡量向量距离:都是值越大,距离越远。
- 推荐系统算法 协同过滤算法详解(一)杰卡德相似度和余弦相似度使用、缺陷
A乐神
算法算法
目录前言协同过滤算法(简称CF)杰卡德相似度公式:示例缺陷余弦相似度算法:例子缺陷以及和皮尔森系数对比总结前言理解吧同胞们,实在是没办发把wps公式复制到文章上,只能截图了,我服了!!!协同过滤算法(简称CF)在早期,协同过滤几乎等同于推荐系统。主要的功能是预测和推荐。协同过滤推荐算法分为两类,分别是:(英文userCF)基于用户的协同过滤算法(相似的用户可能喜欢相同物品);这个一般适合推荐新闻和
- OpenCV书签 #余弦相似度的原理与相似图片/相似文件搜索实验
有时有味
OpenCV算法Pythonopencv余弦相似度相似文件搜索图搜索算法以图搜图pythonnumpy
1.介绍余弦相似度(CosineSimilarity),又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度仅仅与向量的指向方向相关,与向量的长度无关,它将向量根据坐标值绘制到向量空间中,如最常见的二维空间。因此,万物皆向量,我们可以使用余弦相似度来进行相似图片查找、相似文件搜索等工作。两个向量间的余弦值可以通过使用欧几里得点积公式求出:给定两个属性向量,A和B,其余弦相
- 神经网络中的损失函数(下)——分类任务
liuzibujian
神经网络分类人工智能机器学习损失函数
神经网络中的损失函数前言分类任务中的损失函数交叉熵最大似然信息论信息量信息熵最短平均编码长度交叉熵KL散度余弦相似度损失函数总结前言上文主要介绍了回归任务中常用的几个损失函数,本文则主要介绍分类任务中的损失函数。分类任务中的损失函数为了与回归任务的损失函数形式相统一,此处仅考虑某一条数据的损失函数。在分类任务中,假设一共有nnn个类别。该数据的真实值YYY一般用独热编码(只有某一位为1,其余都是0
- 机器学习 - 余弦相似度算法和IntelliScraper
北堂飘霜
机器学习算法人工智能
场景当时,我说要开发一个HSipder,开发完毕的时候,我发现不太智能,通过正则表达式拿过来的相似数据实际上也不太ok,但是后面我在接触机器学习的时候听闻了余弦相似度算法,当时用他爬了一些网页,结果是很ok的,于是我把HSipder项目拆了拆加入了余弦算法,我发现准确度上去了一个维度。很Nice,随机我将其发布到pypi库,并且开源,命名为IntelliScraper,意思是智能爬,也有人工智能的
- NLP-文本处理:实体消歧/词义消歧(Entity Disambiguiation / Word Sense Disambiguation)
u013250861
#NLP基础/句法语义分析
一、简单方法1、提前构建好实体库(描述库)2、将文本转为向量将含有待消歧实体的文本句子AAA(实体前后各取10~20个单词),实体库中该实体的各种描述的句子(A1,A2,...A_1,A_2,...A1,A2,...)都转为向量,然后通过余弦相似度计算cos(A,A1),cos(A,A2),...cos(A,A_1),cos(A,A_2),...cos(A,A1),cos(A,A2),...,最后
- 余弦相似度的计算以及公式
爱打网球的小哥哥一枚吖
信息检索信息检索
公式:思想:余弦相似度的思想是通过计算两个向量之间的余弦值来衡量它们的相似程度。如果两个向量之间的夹角越小,它们的余弦值就越接近1,也就意味着它们越相似。而如果它们的夹角越大,余弦值就越接近0,也就意味着它们越不相似。因此,余弦相似度常用于文本分类、推荐系统、图像处理等领域,以评估两个向量之间的相似程度。计算:引用:余弦相似度计算_计算两个向量的余弦相似度-CSDN博客
- LangChain 65 深入理解LangChain 表达式语言28 余弦相似度Router Moderation LangChain Expression Language (LCEL)
AI架构师易筋
LLM-LargeLanguageModelslangchainchatgpt人工智能python
LangChain系列文章LangChain50深入理解LangChain表达式语言十三自定义pipeline函数LangChainExpressionLanguage(LCEL)LangChain51深入理解LangChain表达式语言十四自动修复配置RunnableConfigLangChainExpressionLanguage(LCEL)LangChain52深入理解LangChain表达
- 基于内容推荐(TF-IDF)的新闻博客系统-期末项目/毕业设计
Please Sit Down
项目毕业设计Javajava
技术栈JavaEEEclipseMysql-5.6SpringSpringMVCMybatisJavaScriptEasyUITF-IDF算法推荐算法基于内容推荐算法:TF-IDF基本原理:根据用户的浏览行为,获得用户的兴趣偏好度,为用户推荐跟他的兴趣偏好相似的内容,采用词频-逆文档词频来提取文章关键字,根据关键词词频向量计算相似度(余弦相似度)来进行内容推荐。(1)方法描述在新闻领域,推荐系统将
- 机器学习 -- 余弦相似度
北堂飘霜
pythonAI机器学习人工智能
场景我有一个页面如下(随便找的):我的需求是拿到所有回答的链接,再或者我在找房子网上,爬到所有的房产信息,我们并不想做过多的处理,我只要告诉程序,请帮我爬一个类似xxx相似度为0.5的就可以了,然后我自会写一小段代码去给数据清洗,这就免去了每次不同网站写不同的一套脚本的痛苦。这里就用到了余弦相似度。余弦相似度余弦相似度,又称为余弦相似性,是通过测量两个向量的夹角的余弦值来度量它们之间的相似性。两个
- 【机器学习:余弦相似度 】机器学习中余弦相似度的理解和应用
jcfszxc
机器学习知识专栏机器学习人工智能
【机器学习:余弦相似度】机器学习中余弦相似度的理解和应用定义余弦距离角距离和相似度L2L_2L2归一化欧几里得距离Otsuka–Ochiai系数属性余弦相似度的三角不等式软余弦测量应用示例扩展GPT图像示例在数据分析领域,余弦相似度用于度量内积空间中两个非零向量之间的相似性。它等于这两个向量间夹角的余弦值,即向量点积除以它们长度的乘积。因此,余弦相似度与向量的大小无关,仅与它们的夹角有关。余弦相似
- 词向量技术 | SkipGram词向量模型的训练以及词的余弦相似度计算
源于花海
自然语言处理人工智能自然语言处理nlp
Hi,大家好啊!词向量是表示自然语言里单词的一种方法,词向量技术在自然语言处理中也有着举足轻重的作用,通过这种方法,实现把自然语言计算转换为向量计算。一、词向量训练1.词向量计算简介在自然语言处理任务中,词向量是表示自然语言里单词的一种方法,即把每个词都表示为一个N维空间内的点,即一个高维空间内的向量。通过这种方法,实现把自然语言计算转换为向量计算。如图1所示的词向量计算任务中,先把每个词(如qu
- 余弦相似度匹配
步入繁华
今天的产品涉及到一个相似度匹配算法,上网查了这类算法很多。跟研发讨论,研发推荐使用余弦值相似度算法。余弦值相似度算法是个什么算法?余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。余弦值越接近1,也就是两个向量越相似,这就叫"余弦相似性",余弦值越接近0,也就是两个向量越不相似,也就是这两个字符串越不相似。是不是更加云里雾里了?没关系,我数学这么差的
- java杨辉三角
3213213333332132
java基础
package com.algorithm;
/**
* @Description 杨辉三角
* @author FuJianyong
* 2015-1-22上午10:10:59
*/
public class YangHui {
public static void main(String[] args) {
//初始化二维数组长度
int[][] y
- 《大话重构》之大布局的辛酸历史
白糖_
重构
《大话重构》中提到“大布局你伤不起”,如果企图重构一个陈旧的大型系统是有非常大的风险,重构不是想象中那么简单。我目前所在公司正好对产品做了一次“大布局重构”,下面我就分享这个“大布局”项目经验给大家。
背景
公司专注于企业级管理产品软件,企业有大中小之分,在2000年初公司用JSP/Servlet开发了一套针对中
- 电驴链接在线视频播放源码
dubinwei
源码电驴播放器视频ed2k
本项目是个搜索电驴(ed2k)链接的应用,借助于磁力视频播放器(官网:
http://loveandroid.duapp.com/ 开放平台),可以实现在线播放视频,也可以用迅雷或者其他下载工具下载。
项目源码:
http://git.oschina.net/svo/Emule,动态更新。也可从附件中下载。
项目源码依赖于两个库项目,库项目一链接:
http://git.oschina.
- Javascript中函数的toString()方法
周凡杨
JavaScriptjstoStringfunctionobject
简述
The toString() method returns a string representing the source code of the function.
简译之,Javascript的toString()方法返回一个代表函数源代码的字符串。
句法
function.
- struts处理自定义异常
g21121
struts
很多时候我们会用到自定义异常来表示特定的错误情况,自定义异常比较简单,只要分清是运行时异常还是非运行时异常即可,运行时异常不需要捕获,继承自RuntimeException,是由容器自己抛出,例如空指针异常。
非运行时异常继承自Exception,在抛出后需要捕获,例如文件未找到异常。
此处我们用的是非运行时异常,首先定义一个异常LoginException:
/**
* 类描述:登录相
- Linux中find常见用法示例
510888780
linux
Linux中find常见用法示例
·find path -option [ -print ] [ -exec -ok command ] {} \;
find命令的参数;
- SpringMVC的各种参数绑定方式
Harry642
springMVC绑定表单
1. 基本数据类型(以int为例,其他类似):
Controller代码:
@RequestMapping("saysth.do")
public void test(int count) {
}
表单代码:
<form action="saysth.do" method="post&q
- Java 获取Oracle ROWID
aijuans
javaoracle
A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.
The oracle.sql.ROWID class i
- java获取方法的参数名
antlove
javajdkparametermethodreflect
reflect.ClassInformationUtil.java
package reflect;
import javassist.ClassPool;
import javassist.CtClass;
import javassist.CtMethod;
import javassist.Modifier;
import javassist.bytecode.CodeAtt
- JAVA正则表达式匹配 查找 替换 提取操作
百合不是茶
java正则表达式替换提取查找
正则表达式的查找;主要是用到String类中的split();
String str;
str.split();方法中传入按照什么规则截取,返回一个String数组
常见的截取规则:
str.split("\\.")按照.来截取
str.
- Java中equals()与hashCode()方法详解
bijian1013
javasetequals()hashCode()
一.equals()方法详解
equals()方法在object类中定义如下:
public boolean equals(Object obj) {
return (this == obj);
}
很明显是对两个对象的地址值进行的比较(即比较引用是否相同)。但是我们知道,String 、Math、I
- 精通Oracle10编程SQL(4)使用SQL语句
bijian1013
oracle数据库plsql
--工资级别表
create table SALGRADE
(
GRADE NUMBER(10),
LOSAL NUMBER(10,2),
HISAL NUMBER(10,2)
)
insert into SALGRADE values(1,0,100);
insert into SALGRADE values(2,100,200);
inser
- 【Nginx二】Nginx作为静态文件HTTP服务器
bit1129
HTTP服务器
Nginx作为静态文件HTTP服务器
在本地系统中创建/data/www目录,存放html文件(包括index.html)
创建/data/images目录,存放imags图片
在主配置文件中添加http指令
http {
server {
listen 80;
server_name
- kafka获得最新partition offset
blackproof
kafkapartitionoffset最新
kafka获得partition下标,需要用到kafka的simpleconsumer
import java.util.ArrayList;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.
- centos 7安装docker两种方式
ronin47
第一种是采用yum 方式
yum install -y docker
 
- java-60-在O(1)时间删除链表结点
bylijinnan
java
public class DeleteNode_O1_Time {
/**
* Q 60 在O(1)时间删除链表结点
* 给定链表的头指针和一个结点指针(!!),在O(1)时间删除该结点
*
* Assume the list is:
* head->...->nodeToDelete->mNode->nNode->..
- nginx利用proxy_cache来缓存文件
cfyme
cache
user zhangy users;
worker_processes 10;
error_log /var/vlogs/nginx_error.log crit;
pid /var/vlogs/nginx.pid;
#Specifies the value for ma
- [JWFD开源工作流]JWFD嵌入式语法分析器负号的使用问题
comsci
嵌入式
假如我们需要用JWFD的语法分析模块定义一个带负号的方程式,直接在方程式之前添加负号是不正确的,而必须这样做:
string str01 = "a=3.14;b=2.71;c=0;c-((a*a)+(b*b))"
定义一个0整数c,然后用这个整数c去
- 如何集成支付宝官方文档
dai_lm
android
官方文档下载地址
https://b.alipay.com/order/productDetail.htm?productId=2012120700377310&tabId=4#ps-tabinfo-hash
集成的必要条件
1. 需要有自己的Server接收支付宝的消息
2. 需要先制作app,然后提交支付宝审核,通过后才能集成
调试的时候估计会真的扣款,请注意
- 应该在什么时候使用Hadoop
datamachine
hadoop
原帖地址:http://blog.chinaunix.net/uid-301743-id-3925358.html
存档,某些观点与我不谋而合,过度技术化不可取,且hadoop并非万能。
--------------------------------------------万能的分割线--------------------------------
有人问我,“你在大数据和Hado
- 在GridView中对于有外键的字段使用关联模型进行搜索和排序
dcj3sjt126com
yii
在GridView中使用关联模型进行搜索和排序
首先我们有两个模型它们直接有关联:
class Author extends CActiveRecord {
...
}
class Post extends CActiveRecord {
...
function relations() {
return array(
'
- 使用NSString 的格式化大全
dcj3sjt126com
Objective-C
格式定义The format specifiers supported by the NSString formatting methods and CFString formatting functions follow the IEEE printf specification; the specifiers are summarized in Table 1. Note that you c
- 使用activeX插件对象object滚动有重影
蕃薯耀
activeX插件滚动有重影
使用activeX插件对象object滚动有重影 <object style="width:0;" id="abc" classid="CLSID:D3E3970F-2927-9680-BBB4-5D0889909DF6" codebase="activex/OAX339.CAB#
- SpringMVC4零配置
hanqunfeng
springmvc4
基于Servlet3.0规范和SpringMVC4注解式配置方式,实现零xml配置,弄了个小demo,供交流讨论。
项目说明如下:
1.db.sql是项目中用到的表,数据库使用的是oracle11g
2.该项目使用mvn进行管理,私服为自搭建nexus,项目只用到一个第三方 jar,就是oracle的驱动;
3.默认项目为零配置启动,如果需要更改启动方式,请
- 《开源框架那点事儿16》:缓存相关代码的演变
j2eetop
开源框架
问题引入
上次我参与某个大型项目的优化工作,由于系统要求有比较高的TPS,因此就免不了要使用缓冲。
该项目中用的缓冲比较多,有MemCache,有Redis,有的还需要提供二级缓冲,也就是说应用服务器这层也可以设置一些缓冲。
当然去看相关实现代代码的时候,大致是下面的样子。
[java]
view plain
copy
print
?
public vo
- AngularJS浅析
kvhur
JavaScript
概念
AngularJS is a structural framework for dynamic web apps.
了解更多详情请见原文链接:http://www.gbtags.com/gb/share/5726.htm
Directive
扩展html,给html添加声明语句,以便实现自己的需求。对于页面中html元素以ng为前缀的属性名称,ng是angular的命名空间
- 架构师之jdk的bug排查(一)---------------split的点号陷阱
nannan408
split
1.前言.
jdk1.6的lang包的split方法是有bug的,它不能有效识别A.b.c这种类型,导致截取长度始终是0.而对于其他字符,则无此问题.不知道官方有没有修复这个bug.
2.代码
String[] paths = "object.object2.prop11".split("'");
System.ou
- 如何对10亿数据量级的mongoDB作高效的全表扫描
quentinXXZ
mongodb
本文链接:
http://quentinXXZ.iteye.com/blog/2149440
一、正常情况下,不应该有这种需求
首先,大家应该有个概念,标题中的这个问题,在大多情况下是一个伪命题,不应该被提出来。要知道,对于一般较大数据量的数据库,全表查询,这种操作一般情况下是不应该出现的,在做正常查询的时候,如果是范围查询,你至少应该要加上limit。
说一下,
- C语言算法之水仙花数
qiufeihu
c算法
/**
* 水仙花数
*/
#include <stdio.h>
#define N 10
int main()
{
int x,y,z;
for(x=1;x<=N;x++)
for(y=0;y<=N;y++)
for(z=0;z<=N;z++)
if(x*100+y*10+z == x*x*x
- JSP指令
wyzuomumu
jsp
jsp指令的一般语法格式: <%@ 指令名 属性 =”值 ” %>
常用的三种指令: page,include,taglib
page指令语法形式: <%@ page 属性 1=”值 1” 属性 2=”值 2”%>
include指令语法形式: <%@include file=”relative url”%> (jsp可以通过 include