5.3 重建 B 树索引对于查询性能的影响
最后我们来看一下重建索引对于性能的提高到底会有什么作用。假设我们有一个表,该表具有 1 百万条记录,占用了 100000 个数据块。而在该表上存在一个索引,在重建之前的 pct_used 为 50% ,高度为 3 ,分支节点块数为 40 个,再加一个根节点块,叶子节点数为 10000 个;重建该索引以后, pct_used 为 90% ,高度为 3 ,分支节点块数下降到 20 个,再加一个根节点块,而叶子节点数下降到 5000 个。那么从理论上说:
1) 如果通过索引获取单独 1 条记录来说:
重建之前的成本: 1 个根+ 1 个分支+ 1 个叶子+ 1 个表块= 4 个逻辑读
重建之后的成本: 1 个根+ 1 个分支+ 1 个叶子+ 1 个表块= 4 个逻辑读
性能提高百分比: 0
2) 如果通过索引获取 100 条记录(占总记录数的 0.01% )来说,分两种情况:
最差的 clustering_factor (即该值等于表的数据行数):
重建之前的成本: 1 个根+ 1 个分支+ 0.0001*10000 ( 1 个叶子)+ 100 个表块= 103 个逻辑读
重建之后的成本: 1 个根+ 1 个分支+ 0.0001*5000 ( 1 个叶子)+ 100 个表块= 102.5 个逻辑读
性能提高百分比: 0.5% (也就是减少了 0.5 个逻辑读)
最好 clustering_factor (即该值等于表的数据块):
重建之前的成本: 1 个根+ 1 个分支+ 0.0001*10000 ( 1 个叶子)+ 0.0001*100000 ( 10 个表块)= 13 个逻辑读
重建之后的成本: 1 个根+ 1 个分支+ 0.0001*5000 ( 1 个叶子)+ 0.0001*100000 ( 10 个表块)= 12.5 个逻辑读
性能提高百分比: 3.8% (也就是减少了 0.5 个逻辑读)
3) 如果通过索引获取 10000 条记录(占总记录数的 1% )来说,分两种情况:
最差的 clustering_factor (即该值等于表的数据行数):
重建之前的成本: 1 个根+ 1 个分支+ 0.01*10000 ( 100 个叶子)+ 10000 个表块= 10102 个逻辑读
重建之后的成本: 1 个根+ 1 个分支+ 0.01*5000 ( 50 个叶子)+ 10000 个表块= 10052 个逻辑读
性能提高百分比: 0.5% (也就是减少了 50 个逻辑读)
最好 clustering_factor (即该值等于表的数据块):
重建之前的成本: 1 个根+ 1 个分支+ 0.01*10000 ( 100 个叶子)+ 0.01*100000 ( 1000 个表块)= 1102 个逻辑读
重建之后的成本: 1 个根+ 1 个分支+ 0.01*5000 ( 50 个叶子)+ 0.01*100000 ( 1000 个表块)= 1052 个逻辑读
性能提高百分比: 4.5% (也就是减少了 50 个逻辑读)
4) 如果通过索引获取 100000 条记录(占总记录数的 10% )来说,分两种情况:
最差的 clustering_factor (即该值等于表的数据行数):
重建之前的成本: 1 个根+ 1 个分支+ 0.1*10000 ( 1000 个叶子)+ 100000 个表块= 101002 个逻辑读
重建之后的成本: 1 个根+ 1 个分支+ 0.1*5000 ( 500 个叶子)+ 100000 个表块= 100502 个逻辑读
性能提高百分比: 0.5% (也就是减少了 500 个逻辑读)
最好 clustering_factor (即该值等于表的数据块):
重建之前的成本: 1 个根+ 1 个分支+ 0.1*10000 ( 1000 个叶子)+ 0.1*100000 ( 10000 个表块)= 11002 个逻辑读
重建之后的成本: 1 个根+ 1 个分支+ 0.1*5000 ( 500 个叶子)+ 0.1*100000 ( 10000 个表块)= 10502 个逻辑读
性能提高百分比: 4.5% (也就是减少了 500 个逻辑读)
5) 对于快速全索引扫描来说,假设每次获取 8 个数据块:
重建之前的成本:( 1 个根+ 40 个分支+ 10000 个叶子) / 8 = 1256 个逻辑读
重建之后的成本:( 1 个根+ 40 个分支+ 5000 个叶子) / 8 = 631 个逻辑读
性能提高百分比: 49.8% (也就是减少了 625 个逻辑读)
从上面有关性能提高的理论描述可以看出,对于通过索引获取的记录行数不大的情况下,索引碎片对于性能的影响非常小;当通过索引获取较大的记录行数时,索引碎片的增加可能导致对于索引逻辑读的增加,但是索引读与表读的比例保持不变;同时,我们从中可以看到, clustering_factor 对于索引读取的性能有很大的影响,并且对于索引碎片所带来的影响具有很大的作用;最后,看起来,索引碎片似乎对于快速全索引扫描具有最大的影响。
我们来看两个实际的例子,分别是 clustering_factor 为最好和最差的两个例子。测试环境为 8KB 的数据块,表空间采用 ASSM 的管理 方式。先做一个最好的 clustering_factor 的例子,创建测试表并填充 1 百万条数据。
该表具有 1 百万条记录,分布在 2328 个数据块中。同时由于我们的数据都是按照顺序递增插入的,所以可以知道,在 id 列上创建的索引都是具有最好的 clustering_factor 值的。我们运行以下查询测试语句,分别返回 1 、 100 、 1000 、 10000 、 50000 、 100000 以及 1000000 条记录。
在运行这些测试语句前,先创建一个 pctfree 为 50% 的索引,来模拟索引碎片,分析并记录索引信息。
然后运行测试语句,记录每条查询语句所需的时间;接下来以 pctfree 为 10% 重建索引,来模拟修复索引碎片,分析并记录索引信息。
接着再次运行这些测试语句,记录每条查询语句所需的时间。下表显示了两个索引信息的对比情况。
pctfree |
Height |
blocks |
br_blks |
lf_blks |
pct_used |
clustering_factor |
50% |
3 |
4224 |
8 |
4096 |
49% |
2326 |
10% |
3 |
2304 |
5 |
2226 |
90% |
2326 |
下表显示了不同的索引下,运行测试语句所需的时间对比情况。
记录数 |
占记录总数的百分比 |
pctused(50%) |
pctused(90 % ) |
性能提高百分比 |
1 条记录 |
0.0001% |
0.01 |
0.01 |
0.00% |
100 条记录 |
0.0100% |
0.01 |
0.01 |
0.00% |
1000 条记录 |
0.1000% |
0.01 |
0.01 |
0.00% |
10000 条记录 |
1.0000% |
0.02 |
0.02 |
0.00% |
50000 条记录 |
5.0000% |
0.06 |
0.06 |
0.00% |
100000 条记录 |
10.0000% |
1.01 |
1.00 |
0.99% |
1000000 条记录 |
100.0000% |
13.05 |
11.01 |
15.63% |
1000000 条记录 (FFS) |
100.0000% |
7.05 |
7.02 |
0.43% |
上面是对最好的 clustering_factor 所做的测试,那么对于最差的 clustering_factor 会怎么样呢?我们将 rebuild_test 中的 id 值反过来排列,也就是说,比如对于 id 为 3478 的记录,将 id 改为 8743 。这样的话,就将把原来按顺序排列的 id 值彻底打乱,从而使得 id 上的索引的 clustering_factor 变成最差的。为此,我写了一个函数用来反转 id 的值。
接下来,我们创建我们第二个测试的测试表。并按照与第一个测试案例相同的方式进行测试。注意,对于测试查询来说,要把表名(包括提示里的)改为 rebuild_test_cf 。