- 在TCGA上下载数据并且进行处理
Red Red
生信小技巧r语言数据库
浏览器搜索TCGAGDC进入网站在TCGA数据库主页选择“Repository”模式根据所需要的选项在侧边栏选择数据清空购物车!!第一次登陆可忽略将刚刚选择好的数据加入购物车,并且在购物车里下载Metadata和Cart数据,下载到同一个文件夹下。使用R语言脚本对数据进行处理,将其提取为genesymbol和样本的数据,推荐看一下该博主处理数据!!真的非常详细!他R语言脚本在这个链接里
- 瑞吉外卖——购物车(移动端)
小杰不想秃头
瑞吉外卖项目javaajax开发语言
需求分析移动端用户可以将菜品或套餐加入购物车。对于菜品来说,如果添加了菜品口味信息,则需要选择规格后才能加入购物车;对于套餐来说,可以直接点击加号将当前套餐加入购物车。在购物车中可以修改套餐或菜品的数量,也可以清空购物车。数据模型需要操作shopping_cart表。代码开发前后端交互过程:点击加入购物车或者加号按钮,页面发送ajax请求,将菜品或套餐加入购物车。点击购物车按钮,页面发送ajax请
- python 连续比较_python实现连续变量最优分箱详解--CART算法
weixin_39834788
python连续比较
关于变量分箱主要分为两大类:有监督型和无监督型对应的分箱方法:A.无监督:(1)等宽(2)等频(3)聚类B.有监督:(1)卡方分箱法(ChiMerge)(2)ID3、C4.5、CART等单变量决策树算法(3)信用评分建模的IV最大化分箱等本篇使用python,基于CART算法对连续变量进行最优分箱由于CART是决策树分类算法,所以相当于是单变量决策树分类。简单介绍下理论:CART是二叉树,每次仅进
- Docker 部署禅道开源版
SHENHUANJIE
DockerPMS禅道项目管理
原文地址:https://skyner.cn/archives/docker-deployment-of-zen-road-open-source-version-igd7s下载镜像开源版20.5安装命令dockerpullhub.zentao.net/app/zentao:20.5创建网络dockernetworkcreate--subnet=172.172.172.0/24zentaonet安
- CART算法
ziworeborn
CART算法就是分类回归树,它只支持二叉树,既可以作分类树,又可以作回归树。那什么是分类树,什么是回归树呢?假如有个数据集,分别给出了,不同年龄、职业、性别的不同学习时间。如果我构造了一棵决策树,想要基于数据判断这个人的职业身份,这个就属于分类树,因为是从几个分类中来做选择。如果是给定了数据,想要预测这个人的年龄,那就属于回归树。分类树可以处理离散数据,也就是数据种类有限的数据,它输出的是样本的类
- 遥感之机器学习树集成模型-CART算法之回归
遥感-GIS
遥感之机器学习树集成模型机器学习图像处理arcgis
本文在前面文章的基础上,连续介绍CART树在回归中的应用,其回归技术经常用于定量遥感领域,涉及各种地表参数含量的反演。主要分为如下几部分:回归概念描述回归树中数据集的划分准则CART回归树的原理和流程CART回归树的核心代码前面内容可参考:遥感之机器学习树模型专栏1回归概念机器学习中的回归建模以及相应的回归算法,在遥感领域对应的就是定量遥感分方向,比如水质参数反演,土壤中各种参数反演,森林各种生物
- CART决策树-基尼指数(全网最详解)
红米煮粥
决策树算法机器学习
文章目录一、基尼指数的定义二、基尼指数在CART决策树中的应用三、基尼指数与CART决策树的构建1.计算每个子集的基尼系数:2.计算基尼指数3.选择最优特征4.其余基尼指数5.构建决策树四、总结CART决策树基尼指数是CART(ClassificationAndRegressionTree)算法中用于分类任务的一种评估指标,主要用于衡量数据集的不纯度或不确定性。以下是关于CART决策树基尼指数的详
- SAP Spartacus的Component映射
JerryWang_汪子熙
Spartacus默认的购物车界面:https://github.com/SAP/spartacus-bootcamp/blob/master/sparta0/src/app/components/cart.component.ts新建一个CartComponent,对Spartacus标准的CartDetailsComponent进行扩展:import{Component}from'@angul
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- GoRules:Go的业务规则引擎
极道Jdon
javascriptreactjs
ZENEngine是一个跨平台、开源业务规则引擎(BRE)。它是用Rust编写的,并提供NodeJS、Python和Go的本机绑定。ZENEngine允许从JSON文件加载和执行JSON决策模型(JDM)。我们的JDMEditor存储库上提供了开源React编辑器。安装gogetgithub.com/gorules/zen-go用法ZENEngine构建为可嵌入的BRE,适用于您的Rust、Nod
- 聊聊elasticsearch的MasterFaultDetection
go4it
序本文主要研究一下elasticsearch的MasterFaultDetectionFaultDetectionelasticsearch-7.0.1/server/src/main/java/org/elasticsearch/discovery/zen/FaultDetection.java/***Abaseclassfor{@linkMasterFaultDetection}&{@
- GEE:关于在GEE平台上进行回归计算的若干问题
_养乐多_
GEEGEEjavascript遥感图像处理云计算回归
作者:CSDN@_养乐多_记录一些在GoogleEarthEngine(GEE)平台上进行机器学习回归计算的问题和解释。文章目录一、回归1.1问:GEE平台上可以进行哪些机器学习回归算法?1.2问:为什么只有这四种?哪个精度高?1.3问:GEE上能否运行深度学习算法?一、回归1.1问:GEE平台上可以进行哪些机器学习回归算法?答:GEE平台上有四种机器学习回归算法,分别是随机森林回归、CART(C
- ApacheCN 交流社区热点汇总 2019.3
布客飞龙
听说B站可以睡小姐姐?可是。。那个小姐姐就是我鸭!【每日一问】卷积、卷积核、卷积神经网络怎么理解?如果你没有经验怎么办?来ApacheCN免费实习把!出国留学-微信讨论组自然语言处理(NLP)学习路线【每日一问】ID3、C4.5、C5.0和CART有什么联系、区别和优劣?【每日一问】假设模型准确率接近的情况下,模型融合越多越好吗?【每日一问】1000W数据量,喂给xgboost的特征大概是多少维度
- GEE:CART(Classification and Regression Trees)回归教程(样本点、特征添加、训练、精度、参数优化)
_养乐多_
GEE遥感图像处理教程回归GEEjavascript云计算遥感图像处理
作者:CSDN@_养乐多_对于分类问题,这个输出通常是一个类别标签,而对于回归问题,输出通常是一个连续的数值。回归可以应用于多种场景,包括预测土壤PH值、土壤有机碳、土壤水分、碳密度、生物量、气温、海冰厚度、不透水面积百分比、植被覆盖度等。本文将介绍在GoogleEarthEngine(GEE)平台上进行CART(ClassificationandRegressionTrees)回归的方法和代码,
- Black Beauty 阅读笔记(3)
杨智麟
1.dog-cart「dog-cart」也可写成「dogcart」,特指由一匹马拉的容两个人背靠背坐的轻便马车,也可指小狗拉的车。2.coupe、cabriolet「coupe」双座四轮轿式马车「cabriolet」指单马双轮轻便马车;篷式马车3.However,asthemasterspentalongtimeonhisbusiness,wedidnotstartforhometillrathe
- [机器学习]决策树
LBENULL
决策树决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一颗熵值下降最快的树,到叶子节点处,熵值为0具有非常好的可解释性、分类速度快的优点,是一种有监督学习最早提及决策树思想的是Quinlan在1986年提出的ID3算法和1993年提出的C4.5算法,以及Breiman等人在1984年提出的CART算法工作原理一般的,一颗决策树包含一个根结点、若干个内部节点和若干个叶节点构造构造
- 程序员不得不知道的 API 接口常识
胡涂阿菌
说实话,我非常希望两年前刚准备找实习的自己能看到本篇文章,那个时候懵懵懂懂,跟着网上的免费教程做了一个购物商城就屁颠屁颠往简历上写。至今我仍清晰地记得,那个电商教程是怎么定义接口的:管它是增加、修改、删除、带参查询,全是POST请求一把梭,比如下面这样:修改用户的收货地址POST/xxx-mall/cart/update_address现在看来,全部用POST请求估计是为了传参方便吧。那个时候自己
- R语言LASSO特征选择、决策树CART算法和CHAID算法电商网站购物行为预测分析
数据挖掘深度学习机器学习算法
全文链接:http://tecdat.cn/?p=32275原文出处:拓端数据部落公众号本文通过分析电子商务平台的用户购物行为,帮助客户构建了一个基于决策树模型的用户购物行为预测分析模型。该模型可以帮助企业预测用户的购物意愿、购物频率及购买金额等重要指标,为企业制定更有针对性的营销策略提供参考。数据来源和处理本研究所使用的数据来自某电子商务平台的用户购物历史记录。读取数据head(data)模型构
- 集成学习——梯度提升树(GBDT)
wxw_csdn
机器学习集成学习GBDT梯度提升树sklearn
集成学习——梯度提升树(GBDT)1模型算法介绍2sklearn中的实现3参考资料1模型算法介绍GBDT也是集成学习Boosting家族的成员,通过采用加法模型,不断减小训练过程中产生的残差算法。即通过多轮迭代,每轮迭代生成一个弱分类器,并在上一轮分类器残差的基础上进行训练,但是弱学习器限定了只能使用CART回归树模型,且迭代思路与Adaboost(利用前一轮迭代弱学习器的误差率来更新训练集的权重
- 学习笔记 ——GBDT(梯度提升决策树)
dastu
数据挖掘机器学习数据挖掘
一.前言GBDT(GradientBoostingDecisionTree)梯度提升决策树,通过多轮迭代生成若干个弱分类器,每个分类器的生成是基于上一轮分类结果来进行训练的。GBDT使用的也是前向分布算法,这一点和Adaboost类似,但不同的是,GBDT的弱分类器一般为Cart回归树(Adaboost一般不做限制)。这里之所以用回归树的原因是GBDT是利用残差逼近,是累加选择,这就和回归输出的连
- datawhale 10月学习——树模型与集成学习:梯度提升树
SheltonXiao
学习集成学习机器学习决策树
前情回顾决策树CART树的实现集成模式两种并行集成的树模型AdaBoost结论速递本次学习了GBDT,首先了解了用于回归的GBDT,将损失使用梯度下降法进行减小;用于分类的GBDT要稍微复杂一些,需要对分类损失进行定义。学习了助教提供的代码。目录前情回顾结论速递1用于回归的GBDT1.1原理1.2代码实现2用于分类的GBDT2.1原理2.2代码实现1用于回归的GBDT1.1原理与AdaBoost类
- 3.如何实现购物车
三个石头_260a
购物车一般分为俩种状态:已登陆状态和未登陆状态!1.当处于未登陆状态时,加入购物车的时候,我们一般会从Cookie中取出一个value(通常是一个uuid),加上一个前缀比如REDIS_CART,作为key,把购物车相关的数据作为value存储到redis中!但是这样存在一个问题,就是我在购物车中加入商品数量的时候,我每次都要根据key把相关的value取出来,遍历购物车数据,增加数量再存回去,这
- 决策树模型: ID3 、C4.5、C5.0、CART、CHAID、Quest比较
cy^2
机器学习决策树机器学习算法
一、决策树的核心思想 决策树:从根节点开始一步步走到叶子节点(决策),所有的数据最终都会落到叶子节点,既可以做分类也可以做回归。树的组成 -根节点(rootnode):第一个选择点,有零条或者多条出边的点; -内部点(internalnode):只有一条入边并且有两条或多条出边的点; -叶节点(leafnode):最终的决策结果; 决策树学习的目的是为了产生一颗泛化能力强,即处理未见示例
- 购物车商品数量为0判断是否删除
九品印相
分布式小程序电商2前端javascriptvue.js
当编辑商品的数量为1,再减的话,我们搞个模态提示,让用户决定是否要删除这个商品?//商品数量的编辑功能handleItemNumEdit(e){const{operation,id}=e.currentTarget.dataset;console.log(operation,id);let{cart}=this.data;letindex=cart.findIndex(v=>v.id===id);
- 推荐收藏 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
Pysamlam
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划分属性信息增益的计算是基于信息熵(度量样本集合纯
- 5000字干货 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
数据不吹牛
算法决策树信息熵大数据机器学习
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124大家好,我是小z今天分享一波机器学习的干货~一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行输的分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划
- 支付确认订单页面实现
九品印相
分布式小程序电商2cssjavascript前端
类似购物车页面,但是这里商品显示的是购物车选中的商品,所以cart要加下checked过滤;{{address.provinceName+address.cityName+address.countyName}}{{address.detailInfo}}{{address.userName}} {{address.telNumber}}{{item.name}}¥{{ite
- 购物车商品数量编辑实现
九品印相
分布式小程序电商2vue.js前端javascript
绑定handleItemNumEdit事件,带上id和operation参数–{{item.num}}+编辑逻辑,获取operation,id,得到cart,判断索引,设置num数据量//商品数量的编辑功能handleItemNumEdit(e){const{operation,id}=e.currentTarget.dataset;console.log(operation,id);let{ca
- R语言机器学习与临床预测模型35--分类回归树
科研私家菜
本内容为【科研私家菜】R语言机器学习与临床预测模型系列课程R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】[图片上传失败...(image-fd5bf4-1648433074208)]01什么是分类回归树CART?分类回归树(ClassificationandRegressionTree,CART)是一种经典的决策树,可以用来处理涉及连续数
- scikit-learn决策树算法笔记总结
python收藏家
决策树算法scikit-learn
1.scikit-learn决策树算法类库介绍scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor。两者的参数定义几乎完全相同,但是意义不全相同。下面就对DecisionTreeClassifier和Decisi
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数