- 深入解析ID3算法:信息熵驱动的决策树构建基石
大千AI助手
人工智能Python#OTHER算法决策树机器学习人工智能DecisionTreeID3信息熵
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。ID3(IterativeDichotomiser3)是机器学习史上的里程碑算法,由RossQuinlan于1986年提出。它首次将信息论引入决策树构建,奠定了现代决策树的理论基础。本文将深入剖析其数学本质与实现细节。往期文章推荐:20.用Mermaid代码画ER图:AI时代的数据建模利器19.ER图:数据库设计的可视化语言-搞
- 理解自信息和信息熵——为什么自信息这样算?
Colin_Downey
随笔信息熵机器学习概率论
一直对香农的信息熵(InformationEntropy)都没有一个非常感性的认识,今日摸鱼学习了一下这个问题。我们先来看看香农是怎么看待交流中的“信息”:“Thefundamentalproblemofcommunicationisthatofreproducingatonepointeitherexactlyorapproximatelyamessageselectedatanotherpoi
- 机器学习与深度学习21-信息论
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.信息上的概念2.相对熵是什么3.互信息是什么4.条件熵和条件互信息5.最大熵模型6.信息增益与基尼不纯度前文回顾上一篇文章链接:地址1.信息上的概念信息熵(Entropy)是信息理论中用于度量随机变量不确定性的概念。它表示了对一个随机事件发生的预测的平均困惑程度或信息量。对于一个离散型随机变量X,其信息熵H(X)定义为所有可能取值的负概率加权平均。数学上,可以使用以下公式来计算离散
- 头歌实践教学平台python机器学习-决策树
学习只是用户态
1024程序员节
决策树简述下列说法正确的是?A、训练决策树的过程就是构建决策树的过程B、ID3算法是根据信息增益来构建决策树下列说法错误的是?B、决策树只能是一棵二叉树决策树算法任务描述本关任务:编写一个使用决策树算法进行信息增益计算及结点划分的程序。相关知识为了完成本关任务,你需要掌握:1.决策树模型,2.决策树模型用于分类,3.决策树信息熵构建。决策树模型决策树(DecisionTree)是在已知各种情况发生
- 从入门到精通:Codeup 与 Git 的高效协作实践
2302_81677011
gitcodeup
一、Codeup与Git的深度解析1.1Codeup的企业级特性作为阿里云推出的一站式代码管理平台,Codeup在以下方面展现出独特优势:安全防护体系:数据加密存储:采用AES-256算法对代码仓库进行静态加密,确保即使物理存储泄露也无法破解。智能敏感信息检测:通过正则匹配+信息熵+上下文语义的三层模型,精准识别硬编码密钥、邮箱等敏感信息,误报率低于5%。细粒度权限控制:支持企业-代码组-仓库-成
- 【机器学习】决策树
YoseZang
机器学习机器学习决策树人工智能
决策树V1.0决策树的概念决策树的结构决策树的构建划分标准的选择信息熵基尼系数划分标准举例节点划分标准的选择流程决策树分裂过程的停止V1.0决策树的概念决策树是属于用树的形式,在树的每一个内部节点上使用1个划分标准,对在该节点上待划分的样本进行划分,划分成2个类别,2堆样本可以作为叶子节点,认为其中样本都属于某个分类,也可以继续使用另1个划分标准继续划分。决策树的每个结点的划分标准是通过学习得到的
- DeepSeek与搜索引擎:AI生成内容如何突破“语义天花板”
weixin_45788582
人工智能DeepSeekai搜索引擎
一、搜索引擎的“内容饥饿症”与AI的“产能悖论”2024年,全球每天新增470万篇网络文章,但搜索引擎的索引拒绝率高达68%。这一矛盾的根源在于:算法对“高质量原创”的定义已从“形式独特性”转向“认知增值性”。传统AI生成内容(如通用GPT模型)虽能快速填充关键词,却难以突破“语义天花板”——即内容的信息熵无法超越训练数据集的平均认知水平。DeepSeek的突破性在于:通过“领域知识蒸馏”技术,将
- 信息论初级——信源概述——2020-11-11
青州街打工人
信息熵
信息论初级——信源概述内容:一、信源的数学模型以及分类二、离散信源信息熵以及其性质三、随机波形信源四、信源的冗余度关于连续与离散的一些思考:我觉得,连续的本质是离散,即万物皆离散。在定义中,连续的例子有语音信号、热噪音信号等,这些例子如果以生活的角度去看,确实是连续的,因为你发音的时候喉咙是一直在震动的,发出的声音是“连续”的,但是如果将你发出声音的单位时间无限缩小,其实你发出的声音是一帧一帧的,
- 机器学习经典算法:决策树原理详解
xiaoyu❅
机器学习算法决策树
决策树(DecisionTree)是一种直观且强大的机器学习算法,被广泛用于分类与回归任务。本文从核心原理(信息熵、基尼系数)、构建过程(ID3/C4.5/CART)、剪枝优化到Python代码实战,全方位解析决策树,并教你如何用Graphviz可视化树结构!目录一、什么是决策树?二、决策树的核心原理1.特征划分标准2.关键公式推导3.决策树构建流程三、Python代码实战1.数据集准备2.模型训
- 决策树的核心思想
code 旭
AI人工智能学习决策树算法机器学习
一、决策树的核心思想本质:通过特征判断对数据集递归划分,形成树形结构。目标:生成一组“若-则”规则,使数据划分到叶子节点时尽可能纯净。关键流程:特征选择:选择最佳分裂特征(如信息增益最大)。节点分裂:根据特征取值划分子节点。停止条件:节点样本纯度过高或样本数过少时终止。二、数学公式与理论1.信息熵(InformationEntropy)衡量数据集的混乱程度:H(D)=−∑k=1Kpklog2pk
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- 完整代码详解:Python实现基于文本内容的用户隐私泄露风险评估
mosquito_lover1
python开发语言
主要应用场景:社交网络隐私风险评估实现一个基于文本内容的用户隐私泄露风险评估系统,涉及多个步骤和技术。以下是一个完整的Python代码示例,涵盖了基于BERT的文本表示、基于聚类的文本隐私体系构建、基于命名实体识别的隐私信息提取、以及基于信息熵的文本隐私量化。1.安装所需的库首先,确保你已经安装了以下Python库:pipinstalltransformersscikit-learnnumpypa
- AI编程赋能Python实现零编程决策树算法
智享食事
算法AI编程python
1.概念理解决策树算法是一种监督学习算法,用于分类和回归任务。它是一种基于树结构的模型,通过一系列的决策规则来对数据进行分类或预测。决策树的每个节点代表一个特征,每个分支代表该特征的一个属性值,而每个叶节点表示一个类别或一个数值。决策树的构建过程通常分为以下几个步骤:1.特征选择:选择最佳的特征来作为当前节点的划分特征,通常使用信息增益、基尼指数或者信息熵等准则来选择最优的特征。2.建立树结构:根
- 信息熵(entropy)定义公式的简单理解
xiongxyowo
杂文划水
首先公式长这样:H(X)=−∑i=1np(xi)logp(xi)H(X)=-\sum_{i=1}^{n}p\left(x_{i}\right)\logp\left(x_{i}\right)H(X)=−i=1∑np(xi)logp(xi)PxiP_{x_{i}}Pxi表示随机事件X为xix_{i}xi的概率。这里直接给出一些结论。对于某一事件,其发生的概率越小,那么其信息量越大;发生的概率越大,那
- 智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:天鹰算法优化脉冲耦合神经网络的图像自动分割1.天鹰算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用天鹰算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.天鹰算法天鹰算法原理请参考:https://blog.csdn.net/u011835903/
- 决策树算法总结(上:ID3,C4.5决策树)
陈小虾
机器学习ID3决策树决策树
文章目录一、决策树原理1.1决策树简介1.2基本概念二、数学知识2.1信息熵2.2条件熵:2.3信息增益三、ID3决策树3.1特征选择3.2算法思路3.3算法不足四、C4.5决策树算法4.1处理连续特征4.2C4.5决策树特征选取4.3处理缺失值4.4过拟合问题五、决策树C4.5算法的不足决策树是一种特殊的树形结构,一般由节点和有向边组成。其中,节点表示特征、属性或者一个类。而有向边包含有判断条件
- 智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割
智能算法研学社(Jack旭)
智能优化算法应用图像分割算法神经网络人工智能
智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割文章目录智能优化算法应用:堆优化算法优化脉冲耦合神经网络的图像自动分割1.堆优化算法2.PCNN网络3.实验结果4.参考文献5.Matlab代码摘要:本文利用堆优化算法对脉冲耦合神经网络的参数进行优化,以信息熵作为适应度函数,提高其图像分割的性能。1.堆优化算法堆优化算法原理请参考:https://blog.csdn.net/u0118
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- 决策树(decision tree)
a15957199647
机器学习数据
决策树就是像树结构一样的分类下去,最后来预测输入样本的属于那类标签。本文是本人的学习笔记,所以有些地方也不是很清楚。大概流程就是1.查看子类是否属于同一个类2.如果是,返回类标签,如果不是,找到最佳的分类子集的特征3.划分数据集4.创建分支节点5.对每一个节点重复上述步骤6.返回树首先我们要像一个办法,怎么来确定最佳的分类特征就是为什么要这么划分子集。一般有三种方法:1.Gini不纯度2.信息熵3
- 蓝桥杯:01串的熵讲解(C++)
DaveVV
蓝桥杯c++蓝桥杯c++c语言算法数据结构
01串的熵本题来自于:2023年十四届省赛大学B组真题(共10道题)主要考察:暴力。代码放在下面,代码中重要的细节全都写了注释,非常清晰明了:#includeusingnamespacestd;intmain(){//请在此输入您的代码intn=23333333;//01串的长度doubletarget=11625907.5798;//信息熵的目标值for(inti=0;i(i)/n;//强转,让
- 机器学习3----决策树
pyniu
机器学习机器学习决策树人工智能
这是前期准备importnumpyasnpimportpandasaspdimportmatplotlib.pyplotasplt#ID3算法#每个特征的信息熵#target:账号是否真实,共2种情况#yes7个p=0.7#no3个p=0.3info_D=-(0.7*np.log2(0.7)+0.3*np.log2(0.3))info_D#日志密度L#日志密度3种结果#s3个0.31yes,2no
- [机器学习]决策树
LBENULL
决策树决策树学习采用的是自顶向下的递归方法,其基本思想是以信息熵为度量构造一颗熵值下降最快的树,到叶子节点处,熵值为0具有非常好的可解释性、分类速度快的优点,是一种有监督学习最早提及决策树思想的是Quinlan在1986年提出的ID3算法和1993年提出的C4.5算法,以及Breiman等人在1984年提出的CART算法工作原理一般的,一颗决策树包含一个根结点、若干个内部节点和若干个叶节点构造构造
- Python实现熵权法:客观求指标数据的权重
乌漆帅黑
python开发语言算法
介绍:熵权法(EntropyWeightMethod)是一种常用的多指标权重确定方法,用于评价指标之间的重要程度。它基于信息熵理论,通过计算指标数据的熵值和权重,实现客观、科学地确定指标权重,以辅助决策分析和多指标优化问题的解决。本文将介绍熵权法的基本原理,并提供Python编程语言的实现过程及示例代码,帮助理解和应用熵权法。目录1.数据准备2.计算指标熵值3.计算指标权重4.示例应用5.完整代码
- 100天搞定机器学习|Day55 最大熵模型
统计学家
1、熵的定义熵最早是一个物理学概念,由克劳修斯于1854年提出,它是描述事物无序性的参数,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变。熵增是宇宙的基本定律,自然的有序状态会自发的逐步变为混沌状态。1948年,香农将熵的概念引申到信道通信的过程中,从而开创了”信息论“这门学科。香农用“信息熵”来描述随机变量的不确定程度,也即信息量的数学期望。关于信息熵、条件熵、联合熵、
- 机器学习:分类决策树(Python)
捕捉一只Diu
python机器学习决策树笔记
一、各种熵的计算entropy_utils.pyimportnumpyasnp#数值计算importmath#标量数据的计算classEntropyUtils:"""决策树中各种熵的计算,包括信息熵、信息增益、信息增益率、基尼指数。统一要求:按照信息增益最大、信息增益率最大、基尼指数增益最大"""@staticmethoddef_set_sample_weight(sample_weight,n_
- 新中特复习笔记二——章节整理上(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 新中特复习笔记三——章节整理下(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 新中特复习笔记一——论述题(上海交通大学)
懒总不想学习想睡觉
研狗--学习笔记笔记学习
前言本文根据复习ppt整理,猜测考点与题型均为老师的个人猜测,不做保证。感觉很多知识点重在理解,大家有空可以把对应的前后文看看!祝大家身体健康,考试顺利!!ps:本文是博主复初愈下整理的,脑子感觉不太好,可能有很多遗漏或者错误的地方,欢迎大家指出,随时更正!pps:上课视频过长且信息熵感觉有点低,这次就不分享了哈以及感谢大家的厚爱,i人非常感动也非常惶恐题目类型:单选,10个,20分多选,10个,
- 熵:信息熵、交叉熵、相对熵
Reore
信息熵信息熵H(X)可以看做,对X中的样本进行编码所需要的编码长度的期望值。交叉熵交叉熵可以理解为,现在有两个分布,真实分布p和非真实分布q,我们的样本来自真实分布p。按照真实分布p来编码样本所需的编码长度的期望为,这就是上面说的信息熵H(p)按照不真实分布q来编码样本所需的编码长度的期望为,这就是所谓的交叉熵H(p,q)相对熵这里引申出KL散度D(p||q)=H(p,q)-H(p)=,也叫做相对
- CDA二级建模分析师考试记录
啾啾二一
文by亲爱的雪莉考试方式是机考,单选+多选+实操题。选择题是用考场的电脑。实操题是考官现场用U盘把资料数据拷贝到你的电脑,2个小时后将数据结果和代码打包再拷贝到考官的U盘(这波操作好low)。选择题主要就是备考手册里的内容,多选题必须全部选对才得分,漏选不得分。题目来说有点翻来覆去,比如计算信息熵,一口气考了四道题,每个1分。其实考试更多是考内容理解,计算同类型考这么多没啥意义。虽说不公布真题,官
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL