二进小波变换算法的C++实现

头文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                                    bwt.h
 *
 * Dyadic Wavelet Transform.
 *
 * These routines are designed for computing the dyadic wavelet transform
 * and it's inverse transform using quadratic spline wavelet.
 *
 * To distinguish with the "dwt" (discrete wavelet transform), we call this
 * file as "bwt", but in fact, it should be dyadic wavelet transform.                                                                                 *
 *
 * Zhang Ming, 2010-03, Xi'an Jiaotong University.
 *****************************************************************************/


#ifndef BWT_H
#define BWT_H


#include <vector.h>
#include <utilities.h>


namespace splab
{

    template<typename Type> Vector< Vector<Type> > bwt( const Vector<Type>&,
                                                        int );
    template<typename Type> Vector<Type> ibwt( const Vector< Vector<Type> >&,
                                               int );


    #include <bwt-impl.h>

}
// namespace splab


#endif
// BWT_H

实现文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                                  bwt-impl.h
 *
 * Implementation for Dyadic Wavelet Transform.
 *
 * Zhang Ming, 2010-03, Xi'an Jiaotong University.
 *****************************************************************************/


/**
 * Forward Transform.
 * The decomposition levels is specified by integer "J". The decomposed
 * coefficients are stroed in a "Vector< vector<Type> >" structure.
 * Detial coefficients are stored from 1st to Jth row, and approximation
 * coefficients are stored at the last row, i.e. the (J+1)th row.
 */
template <typename Type>
Vector< Vector<Type> > bwt( const Vector<Type> &xn, int J )
{
    // lowpass decomposition filter
    Vector<Type> ld(4);
    ld[0] = 0.125;		ld[1] = 0.375;
    ld[2] = 0.375;		ld[3] = 0.125;
    ld = Type(RT2) * ld;
    int ldZeroStart = 1;

    // highpass decomposition filter
    Vector<Type> hd(2);
    hd[0] = -0.5;		hd[1] = 0.5;
    hd = Type(RT2) * hd;
    int hdZeroStart = 0;

    // initializing the coefficients
    int N = xn.size();
    Vector< Vector<Type> > coefs(J+1);
    for( int i=0; i<J; ++i )
        coefs[i].resize(N);

    Vector<Type> approx(N);
    Vector<Type> a(xn);

    // get the inversion of filters
    Vector<Type> ll = flip(ld);
    Vector<Type> hh = flip(hd);

    int llZeroStart = 0,
        hhZeroStart = 0,
        p = 1;

    for( int j=0; j<J; ++j )
    {
        // compute the 0 position of the new filters
        llZeroStart = ll.size()-1 - p*ldZeroStart;
        hhZeroStart = hh.size()-1 - p*hdZeroStart;

        for( int i=0; i<N; ++i )
        {
            Type sum = 0;

            // compute the approximation coefficients
            for( int k=0; k<ll.size(); k+=p )
            {
                int index = mod( i+llZeroStart-k, N );
                sum += ll[k]*a[index];
            }
            approx[i] = sum;

            // compute the detial coefficients
            sum = 0;
            for( int k=0; k<hh.size(); k+=p )
            {
                int index = mod( i+hhZeroStart-k, N );
                sum += hh[k]*a[index];
            }
            coefs[j][i] = sum;
        }

        a = approx;

        // dyadic upsampling
        ll = dyadUp( ll, 1 );
        hh = dyadUp( hh, 1 );
        p *= 2;
    }

    coefs[J] = approx;
    return coefs;
}


/**
 * Backword Transform.
 * The reconstruction livel is specified by integer "level", and
 * "levle" should between "0"(the approximation component) and "J"
 * (the original signal).
 */
template <typename Type>
Vector<Type> ibwt( const Vector< Vector<Type> > &coefs, int level )
{
    Vector<Type> lr(4);
    lr[0] = 0.125;		lr[1] = 0.375;
    lr[2] = 0.375;		lr[3] = 0.125;
    lr = Type(RT2) * lr;
    int lrZeroStart = 1;

    Vector<Type> hr(6);
    hr[0] =	-0.03125;	hr[1] = -0.21875;	hr[2] = -0.6875;
    hr[3] = 0.6875;		hr[4] = 0.21875;	hr[5] = 0.03125;
    hr = Type(RT2) * hr;
    int hrZeroStart = 2;

    int J = coefs.dim() - 1;
    if( (level < 0) || (level > J) )
    {
        cout << "invalid reconstruction level!" << endl;
        return Vector<Type>(0);
    }

    int N = coefs[0].dim();
    Vector<Type> a = coefs[J];
    Vector<Type> xn(N);

    Vector<Type> ll = lr;
    Vector<Type> hh = hr;
    int llZeroStart = 0;
    int hhZeroStart = 0;
    int p = 1;

    // get the Jth level filters
    for( int j=0; j<level-1; ++j )
    {
        p *= 2;
        ll = dyadUp( ll, 1 );
        hh = dyadUp( hh, 1 );
    }

    for( int j=level-1; j>=0; --j )
    {
        // compute the 0 position of the new filters
        llZeroStart = p*lrZeroStart;
        hhZeroStart = p*hrZeroStart;

        // compute the jth approximation coefficients
        for( int i=0; i<N; ++i )
        {
            Type sum = 0;
            for( int k=0; k<ll.size(); k+=p )
            {
                int index = mod( i+llZeroStart-k, N );
                sum += ll[k]*a[index];
            }

            for( int k=0; k<hh.size(); k+=p )
            {
                int index = mod( i+hhZeroStart-k, N );
                sum += hh[k]*coefs[j][index];
            }

            xn[i] = sum/2;
        }

        a = xn;

        // dyadic downsampling
        ll = dyadDown( ll, 0 );
        hh = dyadDown( hh, 0 );
        p /= 2;
    }

    return xn;
}

测试代码:

/*****************************************************************************
 *                               bwt_test.cpp
 *
 * Dyadic wavelet transform testing.
 *
 * Zhang Ming, 2010-03, Xi'an Jiaotong University.
 *****************************************************************************/


#define BOUNDS_CHECK

#include <iostream>
#include <bwt.h>
#include <timing.h>


using namespace std;
using namespace splab;


const int Ls = 100;


int main()
{

	/************************** [ signal ] *************************/
	Vector<double> s(Ls);
	for(int i=0; i<Ls; i++)
	{
		if(i<Ls/4)
			s[i] = 0.0;
		else if(i<2*Ls/4)
			s[i] = 1.0;
		else if(i<3*Ls/4)
			s[i] = 3.0;
		else
			s[i] = 0.0;
	}

	/*************************** [ BWT ] ***************************/
	int level = 3;
	Timing cnt;
	double runtime = 0.0;
	cout << "Taking dyadic wavelet transform." << endl;
	cnt.start();
	Vector< Vector<double> > coefs = bwt( s, level );
	cnt.stop();
	runtime = cnt.read();
	cout << "The running time = " << runtime << " (s)" << endl << endl;

	/*************************** [ IBWT ] **************************/
	cout << "Taking inverse dyadic wavelet transform." << endl;
	cnt.start();
	Vector<double> x = ibwt( coefs, level );
	cnt.stop();
	runtime = cnt.read();
	cout << "The running time = " << runtime << " (s)" << endl << endl;

	cout << "The relative error is : norm(s-x) / norm(s) = "
         << norm(s-x)/norm(s) << endl << endl;

	return 0;
}

运行结果:

Taking dyadic wavelet transform.
The running time = 0 (s)

Taking inverse dyadic wavelet transform.
The running time = 0 (s)

The relative error is : norm(s-x) / norm(s) = 3.76025e-016


Process returned 0 (0x0)   execution time : 0.062 s
Press any key to continue.

你可能感兴趣的:(二进小波变换算法的C++实现)