Tumblr:150亿月浏览量背后的架构挑战(上)

原文地址 http://highscalability.com/blog/2012/2/13/tumblr-architecture-15-billion-page-views-a-month-and-harder.html
转自: http://cloud.csdn.net/a/20120214/311806.html
导读:和许多新兴的网站一样,著名的轻博客服务Tumblr在急速发展中面临了系统架构的瓶颈。每天5亿次浏览量,峰值每秒4万次请求,每天3TB新的数据存储,超过1000台服务器,这样的情况下如何保证老系统平稳运行,平稳过渡到新的系统,Tumblr正面临巨大的挑战。近日,HighScalability网站的Todd Hoff采访了该公司的分布式系统工程师Blake Matheny,撰文系统介绍了网站的架构,内容很有价值。我们也非常希望国内的公司和团队多做类似分享,贡献于社区的同时,更能提升自身的江湖地位,对招聘、业务发展都好处多多。欢迎通过@CSDN云计算的微博向我们投稿。

以下为译文的第一部分。第二部分点这里。(括号内小号字为CSDN编辑所注):

Tumblr每月页面浏览量超过150亿次,已经成为火爆的博客社区。用户也许喜欢它的简约、美丽,对用户体验的强烈关注,或是友好而忙碌的沟通方式,总之,它深得人们的喜爱。

每月超过30%的增长当然不可能没有挑战,其中可靠性问题尤为艰巨。每天5亿次浏览量,峰值每秒4万次请求,每天3TB新的数据存储,并运行于超过1000台服务器上,所有这些帮助Tumblr实现巨大的经营规模。

创业公司迈向成功,都要迈过危险的迅速发展期这道门槛。寻找人才,不断改造基础架构,维护旧的架构,同时要面对逐月大增的流量,而且曾经只有4位工程师。这意味着必须艰难地选择应该做什么,不该做什么。这就是Tumblr的状况。好在现在已经有20位工程师了,可以有精力解决问题,并开发一些有意思的解决方案。

Tumblr最开始是非常典型的LAMP应用。目前正在向分布式服务模型演进,该模型基于Scala、HBase、Redis(著名开源K-V存储方案)、Kafka(Apache项目,出自LinkedIn的分布式发布-订阅消息系统)、Finagle(由Twitter开源的容错、协议中立的RPC系统),此外还有一个有趣的基于Cell的架构,用来支持Dashboard(CSDN注:Tumblr富有特色的用户界面,类似于微博的时间轴)。

Tumblr目前的最大问题是如何改造为一个大规模网站。系统架构正在从LAMP演进为最先进的技术组合,同时团队也要从小的创业型发展为全副武装、随时待命的正规开发团队,不断创造出新的功能和基础设施。下面就是Blake Matheny对Tumblr系统架构情况的介绍。

网站地址
http://www.tumblr.com/

主要数据
    每天5亿次PV(页面访问量)
    每月超过150亿PV
    约20名工程师
    峰值请求每秒近4万次
    每天超过1TB数据进入Hadoop集群
    MySQL/HBase/Redis/memcache每天生成若干TB数据
    每月增长30%
    近1000硬件节点用于生产环境
    平均每位工程师每月负责数以亿计的页面访问
    每天上传大约50GB的文章,每天跟帖更新数据大约2.7TB(CSDN注:这两个数据的比例看上去不太合理,据Tumblr数据科学家Adam Laiacano在Twitter上解释,前一个数据应该指的是文章的文本内容和元数据,不包括存储在S3上的多媒体内容)
软件环境
    开发使用OS X,生产环境使用Linux(CentOS/Scientific)
    Apache
    PHP, Scala, Ruby
    Redis, HBase, MySQL
    Varnish, HAProxy, nginx
    memcache, Gearman(支持多语言的任务分发应用框架), Kafka, Kestrel(Twitter开源的分布式消息队列系统), Finagle
    Thrift, HTTP
    Func——一个安全、支持脚本的远程控制框架和API
    Git, Capistrano(多服务器脚本部署工具), Puppet, Jenkins
硬件环境
    500台Web服务器
    200台数据库服务器(47 pool,20 shard)
    30台memcache服务器
    22台Redis服务器
    15台Varnish服务器
    25台HAproxy节点
    8台nginx服务器
    14台工作队列服务器(Kestrel + Gearman)
架构
    1. 相对其他社交网站而言,Tumblr有其独特的使用模式:

    每天有超过5千万篇文章更新,平均每篇文章的跟帖又数以百计。用户一般只有数百个粉丝。这与其他社会化网站里少数用户有几百万粉丝非常不同,使得Tumblr的扩展性极具挑战性。
    按用户使用时间衡量,Tumblr已经是排名第二的社会化网站。内容的吸引力很强,有很多图片和视频,文章往往不短,一般也不会太长,但允许写得很长。文章内容往往比较深入,用户会花费更长的时间来阅读。
    用户与其他用户建立联系后,可能会在Dashboard上往回翻几百页逐篇阅读,这与其他网站基本上只是部分信息流不同。
    用户的数量庞大,用户的平均到达范围更广,用户较频繁的发帖,这些都意味着有巨量的更新需要处理。
    2. Tumblr目前运行在一个托管数据中心中,已在考虑地域上的分布性。

    3. Tumblr作为一个平台,由两个组件构成:公共Tumblelogs和Dashboard

    公共Tumblelogs与博客类似(此句请Tumblr用户校正),并非动态,易于缓存
    Dashboard是类似于Twitter的时间轴,用户由此可以看到自己关注的所有用户的实时更新。与博客的扩展性不同,缓存作用不大,因为每次请求都不同,尤其是活跃的关注者。而且需要实时而且一致,文章每天仅更新50GB,跟帖每天更新2.7TB,所有的多媒体数据都存储在S3上面。
    大多数用户以Tumblr作为内容浏览工具,每天浏览超过5亿个页面,70%的浏览来自Dashboard。
    Dashboard的可用性已经不错,但Tumblelog一直不够好,因为基础设施是老的,而且很难迁移。由于人手不足,一时半会儿还顾不上。
老的架构
Tumblr最开始是托管在Rackspace上的,每个自定义域名的博客都有一个A记录。当2007年Rackspace无法满足其发展速度不得不迁移时,大量的用户都需要同时迁移。所以他们不得不将自定义域名保留在Rackspace,然后再使用HAProxy和Varnish路由到新的数据中心。类似这样的遗留问题很多。

开始的架构演进是典型的LAMP路线:

最初用PHP开发,几乎所有程序员都用PHP
最初是三台服务器:一台Web,一台数据库,一台PHP
为了扩展,开始使用memcache,然后引入前端cache,然后在cache前再加HAProxy,然后是MySQL sharding(非常奏效)
采用“在单台服务器上榨出一切”的方式。过去一年已经用C开发了两个后端服务:ID生成程序和Staircar(用Redis支持Dashboard通知)
Dashboard采用了“扩散-收集”方式。当用户访问Dashboard时将显示事件,来自所关注的用户的事件是通过拉然后显示的。这样支撑了6个月。由于数据是按时间排序的,因此sharding模式不太管用。

新的架构
由于招人和开发速度等原因,改为以JVM为中心。目标是将一切从PHP应用改为服务,使应用变成请求鉴别、呈现等诸多服务之上的薄层。

这其中,非常重要的是选用了Scala和Finagle。

在团队内部有很多人具备Ruby和PHP经验,所以Scala很有吸引力。
Finagle是选择Scala的重要因素之一。这个来自Twitter的库可以解决大多数分布式问题,比如分布式跟踪、服务发现、服务注册等。
转到JVM上之后,Finagle提供了团队所需的所有基本功能(Thrift, ZooKeeper等),无需再开发许多网络代码,另外,团队成员认识该项目的一些开发者。
Foursquare和Twitter都在用Finagle,Meetup也在用Scala。
应用接口与Thrift类似,性能极佳。
团队本来很喜欢Netty(Java异步网络应用框架,2月4日刚刚发布3.3.1最终版),但不想用Java,Scala是不错的选择。
选择Finagle是因为它很酷,还认识几个开发者。
之所以没有选择Node.js,是因为以JVM为基础更容易扩展。Node的发展为时尚短,缺乏标准、最佳实践以及大量久经测试的代码。而用Scala的话,可以使用所有Java代码。虽然其中并没有多少可扩展的东西,也无法解决5毫秒响应时间、49秒HA、4万每秒请求甚至有时每秒40万次请求的问题。但是,Java的生态链要大得多,有很多资源可以利用。

内部服务从C/libevent为基础正在转向Scala/Finagle为基础。

开始采用新的NoSQL存储方案如HBase和Redis。但大量数据仍然存储在大量分区的MySQL架构中,并没有用HBase代替MySQL。HBase主要支持短地址生产程序(数以十亿计)还有历史数据和分析,非常结实。此外,HBase也用于高写入需求场景,比如Dashboard刷新时一秒上百万的写入。之所以还没有替换HBase,是因为不能冒业务上风险,目前还是依靠人来负责更保险,先在一些小的、不那么关键的项目中应用,以获得经验。MySQL和时间序列数据sharding(分片)的问题在于,总有一个分片太热。另外,由于要在slave上插入并发,也会遇到读复制延迟问题。

此外,还开发了一个公用服务框架:

花了很多时间解决分布式系统管理这个运维问题。
为服务开发了一种Rails scaffolding,内部用模板来启动服务。
所有服务从运维的角度来看都是一样的,所有服务检查统计数据、监控、启动和停止的方式都一样。
工具方面,构建过程围绕SBT(一个Scala构建工具),使用插件和辅助程序管理常见操作,包括在Git里打标签,发布到代码库等等。大多数程序员都不用再操心构建系统的细节了。
200台数据库服务器中,很多是为了提高可用性而设,使用的是常规硬件,但MTBF(平均故障间隔时间)极低。故障时,备用充足。

为了支持PHP应用有6个后端服务,并有一个小组专门开发后端服务。新服务的发布需要两到三周,包括Dashboard通知、Dashboard二级索引、短地址生成、处理透明分片的memcache代理。其中在MySQL分片上耗时很多。虽然在纽约本地非常热,但并没有使用MongoDB,他们认为MySQL的可扩展性足够了。

Gearman用于会长期运行无需人工干预的工作。

可用性是以达到范围(reach)衡量的。用户能够访问自定义域或者Dashboard吗?也会用错误率。

历史上总是解决那些最高优先级的问题,而现在会对故障模式系统地分析和解决,目的是从用户和应用的角度来定成功指标。(后一句原文似乎不全)

最开始Finagle是用于Actor模型的,但是后来放弃了。对于运行后无需人工干预的工作,使用任务队列。而且Twitter的util工具库中有Future实现,服务都是用Future(Scala中的无参数函数,在与函数关联的并行操作没有完成时,会阻塞调用方)实现的。当需要线程池的时候,就将Future传入Future池。一切都提交到Future池进行异步执行。

Scala提倡无共享状态。由于已经在Twitter生产环境中经过测试,Finagle这方面应该是没有问题的。使用Scala和Finagle中的结构需要避免可变状态,不使用长期运行的状态机。状态从数据库中拉出、使用再写回数据库。这样做的好处是,开发人员不需要操心线程和锁。

22台Redis服务器,每台的都有8-32个实例,因此线上同时使用了100多个Redis实例。

Redis主要用于Dashboard通知的后端存储。
所谓通知就是指某个用户like了某篇文章这样的事件。通知会在用户的Dashboard中显示,告诉他其他用户对其内容做了哪些操作。
高写入率使MySQL无法应对。
通知转瞬即逝,所以即使遗漏也不会有严重问题,因此Redis是这一场景的合适选择。
这也给了开发团队了解Redis的机会。
使用中完全没有发现Redis有任何问题,社区也非常棒。
开发了一个基于Scala Futures的Redis接口,该功能现在已经并入了Cell架构。
短地址生成程序使用Redis作为一级Cache,HBase作为永久存储。
Dashboard的二级索引是以Redis为基础开发的。
Redis还用作Gearman的持久存储层,使用Finagle开发的memcache代理。
正在缓慢地从memcache转向Redis。希望最终只用一个cache服务。性能上Redis与memcache相当。
(先到这里吧,敬请期待下篇,包括如何用Kafaka、Scribe、Thrift实现内部活动流,Dashboard的Cell架构,开发流程和经验教训等精彩内容。)

翻译:包研,张志平,刘江;审校:刘江

英文原文出自High Scalability

你可能感兴趣的:(架构)