- AI系统API网关原理与代码实战案例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统API网关原理与代码实战案例讲解1.背景介绍在现代分布式系统中,API网关作为一个重要的组件,起到了至关重要的作用。它不仅仅是一个简单的请求路由器,更是一个集成了安全、负载均衡、缓存、监控等多种功能的综合性服务。特别是在AI系统中,API网关的作用尤为重要,因为AI系统通常需要处理大量的数据请求,并且需要保证高可用性和高性能。API网关的概念最早出现在微服务架构中,旨在解决微服务之间的通信
- 芒格的“思维格栅“:构建全面的投资分析框架
AGI大模型与大数据研究院
DeepSeekai
芒格的"思维格栅":构建全面的投资分析框架关键词:芒格、思维格栅、投资分析框架、跨学科思维、投资决策摘要:本文深入探讨了芒格的“思维格栅”理论及其在构建全面投资分析框架中的应用。首先介绍了“思维格栅”理论的背景和重要性,接着阐述了其核心概念与联系,包括跨学科思维的原理和架构。通过详细讲解核心算法原理和具体操作步骤,结合数学模型和公式进行举例说明,帮助读者理解如何运用这一理论进行投资分析。随后通过项
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- DeepSeek多语言670亿参数高效创作解析
智能计算研究中心
其他
内容概要本文聚焦DeepSeek系列模型的核心技术突破与应用价值,通过解析其混合专家架构(MoE)的设计逻辑与670亿参数的规模化优势,揭示其在多语言处理、视觉语言理解及代码生成领域的创新表现。从技术特性出发,文章将对比OpenAI等主流模型的性能差异,探讨参数效率与计算资源优化如何支撑低成本、高精度的内容生成场景,例如学术论文写作、智能选题规划及SEO关键词拓展。同时,通过分析DeepSeekP
- 算力融合创新与多场景应用生态构建
智能计算研究中心
其他
内容概要算力作为数字经济的核心驱动力,正经历从单一计算范式向融合架构的跨越式演进。随着异构计算、光子计算等底层技术的突破,算力资源逐步形成跨架构协同、多模态联动的智能供给体系,支撑工业互联网、医疗影像、智能安防等场景实现效率跃升。与此同时,量子计算与神经形态计算的前沿探索,正在重塑科学计算与实时决策的技术边界。建议行业关注算力可扩展性与安全标准的协同设计,通过动态调度算法与分布式架构优化,构建弹性
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- H800核心性能优化技术
智能计算研究中心
其他
内容概要作为新一代AI加速卡的核心创新载体,H800通过异构计算架构与动态能效管理技术的协同设计,实现了从硬件底层到应用层的系统性优化。其技术突破聚焦于张量核心重构带来的计算密度提升、混合精度运算对资源利用率的增强,以及智能散热方案在复杂负载场景下的稳定性保障。这些创新不仅显著提升了30%以上的能效比,更通过精细化任务调度机制,解决了深度学习训练中高并发数据处理与模型参数同步的效率瓶颈。值得关注的
- 人工智能知识架构详解
CodeJourney.
数据库人工智能算法架构
人工智能(ArtificialIntelligence,简称AI)作为当今最具影响力和发展潜力的技术领域之一,正深刻地改变着我们的生活、工作和社会。从智能家居到自动驾驶,从医疗诊断到金融投资,人工智能的应用无处不在。要全面深入地理解和掌握人工智能,构建一个清晰、系统的知识架构至关重要。二、基础数学(一)线性代数线性代数是人工智能的重要数学基础之一。矩阵运算在数据表示和变换中起着核心作用。例如,在图
- ROS导航栈中的move_base模块详解:架构、组件关系与数据流
YRr YRr
架构rosmove_base
ROS导航栈中的move_base模块详解:架构、组件关系与数据流摘要RobotOperatingSystem(ROS)作为广泛应用于机器人开发的开源框架,其导航栈中的move_base模块是实现机器人自主导航的核心组件。本文将深入解析move_base模块的整体架构,详述其主要组成部分及相互关系,探讨节点、话题与传感器数据的流向,并通过实例说明这些组件如何协同工作以实现高效、稳定的自主导航功能。
- 智能化业财融合的数字化转型与整合:企业财务信息规划设计与实现(4)
数据工坊
企业财务信息化前端框架大数据软件构建
目录2.5构建“三层三域”的企业财务信息架构体系2.5.1架构总体概述2.5.2“三层架构”划分及功能内容2.5.3“三域架构”划分及功能内容2.5.4“三层三域”技术集成与协同2.5.5“三层三域”架构优势2.5构建“三层三域”的企业财务信息架构体系2.5.1架构总体概述要构建以业务与财务深度融合为基础的数字化管理体系,我们在前面对企业财务资源管理系统架构进行了一般性分层剖析的基础上,描述了企业
- DeepSeek混合专家架构赋能智能创作
智能计算研究中心
其他
内容概要在人工智能技术加速迭代的当下,DeepSeek混合专家架构(MixtureofExperts)通过670亿参数的动态路由机制,实现了多模态处理的范式突破。该架构将视觉语言理解、多语言语义解析与深度学习算法深度融合,构建出覆盖文本生成、代码编写、学术研究等场景的立体化能力矩阵。其核心优势体现在三个维度:精准化内容生产——通过智能选题、文献综述自动生成等功能,将学术论文写作效率提升40%以上;
- 【AI论文】RWKV-7“鹅”模型,具备富有表现力的动态状态演化能力
东临碣石82
人工智能
摘要:我们推出RWKV-7“鹅”,这是一种全新的序列建模架构,同时发布的还有预训练语言模型。在多语言任务中,这些模型在30亿参数规模下实现了下游性能的全新最优水平,并且在英语语言性能上,尽管训练所用的标记数量远少于其他顶尖30亿参数模型,但仍能与当前最优水平相媲美。然而,RWKV-7模型仅需常量内存使用和每个标记的常量推理时间。RWKV-7引入了一种新泛化的delta规则,该规则具有向量值门控和上
- RocketMQ 和 Kafka
重生之我在成电转码
rocketmqKafkajava消息队列
✅RocketMQ和Kafka是两种非常流行的分布式消息队列系统,它们广泛用于大规模、高并发的消息传递和事件驱动架构中。虽然它们都属于消息队列,但在设计理念、特性和应用场景上有一些差异。接下来,我们来深入分析这两者的区别与优缺点。一、Kafka和RocketMQ的概述✅1️⃣KafkaKafka是一个分布式的流处理平台,由Apache软件基金会开发,最初由LinkedIn开发并开源。Kafka主要
- HarmonyOS应用开发者高级认证-编程考试
harmonyos
简介需要掌握ArkTS基础语法,使用ArkTS实现基础编程,包含数组、字符串排序、字符串匹配等。重点考察开发者编程实操能力。推荐用户群体:项目经理、工程架构师。考试说明1、考试需实名认证,请在考前于个人主页→个人信息→基本信息→进行实名认证,否则考试通过无法获取专业证书;2、每个账号每月有3次考试机会,次月重置考试次数。做题过程中请认真对待,避免考试次数浪费。3、理论考试时长为1小时,编程考试时长
- mysql vs oracle
HBryce24
数据库mysqloracle数据库
以下是Oracle数据库与MySQL数据库的详细比较,从架构设计、功能特性、性能、适用场景等多个维度进行综合分析:1.基础特性与定位Oracle:定位:面向大型企业级应用,强调高并发、高可用性和复杂事务处理能力。授权模式:闭源商业软件,需购买许可证,成本较高。架构:多进程架构(每个用户连接对应独立进程),支持分布式集群(如RAC)。MySQL:定位:轻量级开源数据库,适合中小型应用及Web开发。授
- STM32 —— 嵌入式系统、通用计算机系统、物联网三层架构
Exhausted、
stm32单片机stm32嵌入式硬件物联网架构
目录一、嵌入式系统的概念二、通用计算机系统与嵌入式系统的比较用途硬件软件性能与功耗开发与维护三、嵌入式系统与物联网的关系四、物联网的三层架构1.感知层(PerceptionLayer)2.网络层(NetworkLayer)3.应用层(ApplicationLayer)三层架构的协作流程一、嵌入式系统的概念嵌入式系统一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及应用程序等4部分组成,并且分为
- 鸿蒙保姆级教学
冬冬小圆帽
harmonyos华为
鸿蒙(HarmonyOS)是华为推出的一款面向全场景的分布式操作系统,支持手机、平板、智能穿戴、智能家居、车载设备等多种设备。鸿蒙系统的核心特点是分布式架构、一次开发多端部署和高性能。以下是从入门到大神级别的鸿蒙开发深度分析,结合代码示例,帮助你逐步掌握鸿蒙开发。1.鸿蒙开发入门1.1环境搭建鸿蒙编译器安装运行教程安装DevEcoStudio:下载并安装DevEcoStudio,这是鸿蒙官方提供的
- Navicat 17 for Mac 数据库管理
1alisa
数据库
Navicat17forMac数据库管理文章目录Navicat17forMac数据库管理一、介绍二、效果三、下载一、介绍NavicatPremium17forMac是一款专业的数据库管理工具,适用于开发人员、数据库管理员和分析师等用户。它提供了强大的数据管理功能和丰富的工具,使用户能够轻松地管理和维护数据库,提高数据处理效率。提供了无缝数据迁移功能;多元化操作工具,可以轻松地将不同格式的数据传输到
- 分布式事务解决方案:Seata原理详解与实战教程
Cloud_.
分布式wpfseata
一、为什么需要Seata?在微服务架构中,跨服务的事务管理成为核心痛点:传统事务失效:服务拆分导致无法使用本地事务数据不一致风险:网络抖动、服务宕机等情况导致数据错乱复杂场景处理难:涉及多个数据库、消息队列等异构存储Seata(SimpleExtensibleAutonomousTransactionArchitecture)是阿里开源的分布式事务解决方案,提供AT模式、TCC模式、Saga模式三
- 云原生边缘计算:分布式智能的时代黎明
桂月二二
云原生边缘计算分布式
引言:从集中式算力到万物智联的范式裂变AT&T边缘节点部署超5000个,特斯拉自动驾驶系统每节点200TOPS算力。国家电网通过边缘计算实现毫秒级电网故障隔离,菜鸟物流分拣效率提升400%。IDC预测2027年边缘基础设施支出将达亿,宝马汽车工厂设备预测性维护准确率达9亿运维成本。一、边缘计算范式进化论1.1算力拓扑结构演变世代大型主机中心化云计算分布式雾计算去中心化边缘计算泛在化神经形态计算体计
- Python + Qt Designer构建多界面GUI应用程序:Python如何调用多个界面文件
懒大王爱吃狼
pythonpythonqt命令模式mysql数据库Python基础开发语言
引言QtDesigner是一个用户友好的图形用户界面设计工具,它可以帮助开发人员通过拖放的方式快速创建界面。在实际开发中,往往需要设计多个界面文件,并在Python代码中进行统一管理和使用。本文将介绍如何在Python中使用QtDesigner设计好的多个界面文件的常用方法。方法一:单独加载并显示如果界面文件相对独立,并且没有复杂的依赖关系,可以考虑单独加载并显示每个界面文件。fromPyQt5i
- 基于51单片机设计的呼吸灯
鱼弦
单片机系统合集51单片机嵌入式硬件单片机
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)基于51单片机设计的呼吸灯是一种常见的LED灯效应果,通过控制LED的亮度逐渐增加和减小,模拟人类呼吸的效果。下面将对其原理、应用场景、算法实现、代码实现等进
- 【硬核实战】ETCD+AI智能调度深度整合!从架构设计到调优避坑,手把手教你打造高可用调度系统!
码农突围计划
人工智能etcd大数据
一、核心架构设计:ETCD如何赋能AI调度?架构图:[AI调度引擎]←实时数据→[ETCD集群]↓决策指令[执行层(车辆/物流/交通设备)]核心角色:ETCD:存储调度策略、节点状态、任务队列、实时环境数据(如交通流量、天气)AI模型:基于ETCD数据动态决策(如路径规划、资源分配)调度执行层:接收ETCD下发的指令并执行(如车辆调度、信号灯控制)优势:强一致性:ETCD的Raft协议确保调度策略
- 大规模语言模型从理论到实践 分布式训练的集群架构
AI智能涌现深度研究
DeepSeekR1&大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践分布式训练的集群架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModels,LLMs)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了突破性进展。LLMs,如BERT、GPT-3等,通
- 数仓建模—Data Warebase AI 时代数据平台应当的样子
不二人生
数仓建模人工智能数据仓库数仓建模
DataWarebaseAI时代数据平台应当的样子引言:在这个AI技术飞速发展的时代,我们有能力更深入地发掘数据潜在的价值,而数据处理不应当成为阻碍。云原生分布式DataWarebase将开启处理数据的新范式,它让数据的使用返璞归真,不论是存储还是查询,一个系统满足业务全方位数据需求。打破复杂数据架构的束缚,大大降低数据的使用门槛,释放数据潜能,让数据涌现智能。背景近二十年大数据发展史2002年我
- 【第11章】亿级电商平台订单系统-海量数据架构设计
cherry5230
架构系统架构架构分布式
1-1本章导学课程导学课程定位:大型系统架构设计核心难点解析核心项目:BToB电商平台订单系统(年交易额200亿级)本章知识体系1.核心概念辨析海量数据vs大数据本质区别解析常见认知误区说明2.方法论框架海量数据处理核心思想分布式计算原理数据分片策略弹性扩展机制3.数据库架构设计方法论体系读写分离模式分库分表策略数据分区方案缓存层设计4.数据处理体系海量数据处理之道批处理与流处理数据压缩技术异步处
- 火山云与腾讯云的优势对比
苹果企业签名分发
腾讯云云计算
首先,我需要确定用户的需求是什么。可能他们是在选择云服务提供商,或者在做市场调研。用户可能是企业的IT决策者,或者是开发人员,需要了解哪个平台更适合他们的项目。接下来,我得收集火山云和腾讯云的基本信息。火山云是字节跳动旗下的,虽然进入市场较晚,但可能有字节的技术支持,比如大数据和AI方面的优势。腾讯云作为老牌厂商,生态完善,产品线全,尤其在游戏、社交等领域有优势。需要对比的方面包括:背景与市场地位
- Couchbase Analytics 的结构
PersistDZ
数据存储couchbase
CouchbaseAnalytics的结构CouchbaseAnalytics服务专为大规模、并发、复杂的分析查询而设计,同时不会影响事务性工作负载的性能。下面将详细介绍其结构和架构,以帮助您深入理解CouchbaseAnalytics的运作方式。1.Couchbase集群架构CouchbaseServer是一个多维度可扩展的分布式数据库,其核心架构由多个服务组成:数据服务(DataService
- 《Flutter从入门到实战:手把手构建跨平台应用(万字深度解析)》
前端极客探险家
flutter
目录标题前言:为什么选择Flutter?一、Flutter基础篇:环境搭建与核心概念1.1开发环境配置1.2项目结构深度解析二、核心机制:Widget与渲染原理2.1Widget树构建原理2.2状态管理方案对比三、企业级开发实战3.1工程化架构设计3.2典型功能实现四、进阶开发技巧4.1性能优化方案4.2平台特定代码集成五、项目实战:开发企业级Todo应用(深度扩展版)5.1项目初始化与工程化配置
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><