IOCP(I/O Completion Port,I/O完成端口)是性能最好的一种I/O模型。它是应用程序使用线程池处理异步I/O请求的一种机制。在处理多个并发的异步I/O请求时,以往的模型都是在接收请求是创建一个线程来应答请求。这样就有很多的线程并行地运行在系统中。而这些线程都是可运行的,Windows内核花费大量的时间在进行线程的上下文切换,并没有多少时间花在线程运行上。再加上创建新线程的开销比较大,所以造成了效率的低下。
调用的步骤如下: 抽象出一个完成端口大概的处理流程: 1:创建一个完成端口。 2:创建一个线程A。 3:A线程循环调用GetQueuedCompletionStatus()函数来得到IO操作结果,这个函数是个阻塞函数。 4:主线程循环里调用accept等待客户端连接上来。 5:主线程里accept返回新连接建立以后,把这个新的套接字句柄用CreateIoCompletionPort关联到完成端口,然后发出一个异步的WSASend或者WSARecv调用,因为是异步函数,WSASend/WSARecv会马上返回,实际的发送或者接收数据的操作由WINDOWS系统去做。 6:主线程继续下一次循环,阻塞在accept这里等待客户端连接。 7:WINDOWS系统完成WSASend或者WSArecv的操作,把结果发到完成端口。 8:A线程里的GetQueuedCompletionStatus()马上返回,并从完成端口取得刚完成的WSASend/WSARecv的结果。 9:在A线程里对这些数据进行处理(如果处理过程很耗时,需要新开线程处理),然后接着发出WSASend/WSARecv,并继续下一次循环阻塞在GetQueuedCompletionStatus()这里。 归根到底概括完成端口模型一句话: 我们不停地发出异步的WSASend/WSARecv IO操作,具体的IO处理过程由WINDOWS系统完成,WINDOWS系统完成实际的IO处理后,把结果送到完成端口上(如果有多个IO都完成了,那么就在完成端口那里排成一个队列)。我们在另外一个线程里从完成端口不断地取出IO操作结果,然后根据需要再发出WSASend/WSARecv IO操作。 而IOCP模型是事先开好了N个线程,存储在线程池中,让他们hold。然后将所有用户的请求都投递到一个完成端口上,然后N个工作线程逐一地从完成端口中取得用户消息并加以处理。这样就避免了为每个用户开一个线程。既减少了线程资源,又提高了线程的利用率。 完成端口模型是怎样实现的呢?我们先创建一个完成端口(::CreateIoCompletioPort())。然后再创建一个或多个工作线程,并指定他们到这个完成端口上去读取数据。我们再将远程连接的套接字句柄关联到这个完成端口(还是用::CreateIoCompletionPort())。一切就OK了。 工作线程都干些什么呢?首先是调用::GetQueuedCompletionStatus()函数在关联到这个完成端口上的所有套接字上等待I/O的完成。再判断完成了什么类型的I/O。一般来说,有三种类型的I/O,OP_ACCEPT,OP_READ和OP_WIRTE。我们到数据缓冲区内读取数据后,再投递一个或是多个同类型的I/O即可(::AcceptEx()、::WSARecv()、::WSASend())。对读取到的数据,我们可以按照自己的需要来进行相应的处理。 为此,我们需要一个以OVERLAPPED(重叠I/O)结构为第一个字段的per-I/O数据自定义结构。 typedef struct _PER_IO_DATA { OVERLAPPED ol; // 重叠I/O结构 char buf[BUFFER_SIZE]; // 数据缓冲区 int nOperationType; //I/O操作类型 #define OP_READ 1 #define OP_WRITE 2 #define OP_ACCEPT 3 } PER_IO_DATA, *PPER_IO_DATA; 将一个PER_IO_DATA结构强制转化成一个OVERLAPPED结构传给::GetQueuedCompletionStatus()函数,返回的这个PER_IO_DATA结构的的nOperationType就是I/O操作的类型。当然,这些类型都是在投递I/O请求时自己设置的。 这样一个IOCP服务器的框架就出来了。当然,要做一个好的IOCP服务器,还有考虑很多问题,如内存资源管理、接受连接的方法、恶意的客户连接、包的重排序等等。以上是个人对于IOCP模型的一些理解与看法,还有待完善。另外各Winsock API的用法参见MSDN。 补充IOCP模型的实现: //创建一个完成端口 HANDLE FCompletPort = CreateIoCompletionPort( INVALID_HANDLE_VALUE, 0,0,0 ); //接受远程连接,并把这个连接的socket句柄绑定到刚才创建的IOCP上 AConnect = accept( FListenSock, addr, len); CreateIoCompletionPort( AConnect, FCompletPort, NULL, 0 ); //创建CPU数*2 + 2个线程 SYSTEM_INFO si; GetSystemInfo(&si); for (int i=1;si.dwNumberOfProcessors*2+2;i++) { AThread = TRecvSendThread.Create( false ); AThread.CompletPort = FCompletPort;//告诉这个线程,你要去这个IOCP去访问数据 } OK,就这么简单,我们要做的就是建立一个IOCP,把远程连接的socket句柄绑定到刚才创建的IOCP上,最后创建n个线程,并告诉这n个线程到这个IOCP上去访问数据就可以了。 再看一下TRecvSendThread线程都干些什么: void TRecvSendThread.Execute(...) { while (!self.Terminated) { //查询IOCP状态(数据读写操作是否完成) GetQueuedCompletionStatus( CompletPort, BytesTransd, CompletKey, POVERLAPPED(pPerIoDat), TIME_OUT ); if (BytesTransd !=0) ....... ....;//数据读写操作完成 //再投递一个读数据请求 WSARecv( CompletKey, &(pPerIoDat->BufData), 1, BytesRecv, Flags, &(pPerIoDat->Overlap), NULL ); } } 读写线程只是简单地检查IOCP是否完成了我们投递的读写操作,如果完成了则再投递一个新的读写请求。 应该注意到,我们创建的所有TRecvSendThread都在访问同一个IOCP(因为我们只创建了一个IOCP),并且我们没有使用临界区!难道不会产生冲突吗?不用考虑同步问题吗? 呵呵,这正是IOCP的奥妙所在。IOCP不是一个普通的对象,不需要考虑线程安全问题。它会自动调配访问它的线程:如果某个socket上有一个线程A正在访问,那么线程B的访问请求会被分配到另外一个socket。这一切都是由系统自动调配的,我们无需过问。
实例:
简单实现,适合IOCP入门
参考:《WINDOWS网络与通信程序设计》
/******************************************************************
* * Copyright (c) 2008, xxxxx有限公司 * All rights reserved. * * 文件名称:IOCPHeader.h * 摘 要: IOCP定义文件 * * 当前版本:1.0 * 作 者:吴会然 * 完成日期:2008-9-16 * * 取代版本: * 原 作者: * 完成日期: * ******************************************************************/
#ifndef _IOCPHEADER_H_20080916_
#define _IOCPHEADER_H_20080916_
#include <WINSOCK2.H>
#include <windows.h>
#define BUFFER_SIZE 1024
/******************************************************************
* per_handle 数据 *******************************************************************/ typedef struct _PER_HANDLE_DATA { SOCKET s; // 对应的套接字句柄 sockaddr_in addr; // 对方的地址
}PER_HANDLE_DATA, *PPER_HANDLE_DATA;
/******************************************************************
* per_io 数据 *******************************************************************/ typedef struct _PER_IO_DATA { OVERLAPPED ol; // 重叠结构 char buf[BUFFER_SIZE]; // 数据缓冲区 int nOperationType; // 操作类型
#define OP_READ 1
#define OP_WRITE 2 #define OP_ACCEPT 3
}PER_IO_DATA, *PPER_IO_DATA;
#endif
/******************************************************************
* * Copyright (c) 2008, xxxxx有限公司 * All rights reserved. * * 文件名称:main.cpp * 摘 要: iocp demo * * 当前版本:1.0 * 作 者:吴会然 * 完成日期:2008-9-16 * * 取代版本: * 原 作者: * 完成日期: * ******************************************************************/
#include <iostream>
#include <string> #include "IOCPHeader.h" using namespace std;
DWORD WINAPI ServerThread( LPVOID lpParam );
int main( int argc, char *argv[] )
{ ////////////////////////////////////////////////////////////////////////// WSADATA wsaData;
if( 0 != WSAStartup( MAKEWORD( 2, 2 ), &wsaData ) )
{ printf( "Using %s (Status:%s)\n", wsaData.szDescription, wsaData.szSystemStatus ); printf( "with API versions: %d.%d to %d.%d", LOBYTE( wsaData.wVersion), HIBYTE( wsaData.wVersion ), LOBYTE( wsaData.wHighVersion), HIBYTE( wsaData.wHighVersion) );
return -1;
} else { printf("Windows sockets 2.2 startup\n"); } //////////////////////////////////////////////////////////////////////////
int nPort = 20055;
// 创建完成端口对象
// 创建工作线程处理完成端口对象的事件 HANDLE hIocp = ::CreateIoCompletionPort( INVALID_HANDLE_VALUE, 0, 0, 0 ); ::CreateThread( NULL, 0, ServerThread, (LPVOID)hIocp, 0, 0 );
// 创建监听套接字,绑定本地端口,开始监听
SOCKET sListen = ::socket( AF_INET,-SOCK_STREAM, 0 );
SOCKADDR_IN addr;
addr.sin_family = AF_INET; addr.sin_port = ::htons( nPort ); addr.sin_addr.S_un.S_addr = INADDR_ANY; ::bind( sListen, (sockaddr *)&addr, sizeof( addr ) ); ::listen( sListen, 5 );
printf( "iocp demo start......\n" );
// 循环处理到来的请求
while ( TRUE ) { // 等待接受未决的连接请求 SOCKADDR_IN saRemote; int nRemoteLen = sizeof( saRemote ); SOCKET sRemote = ::accept( sListen, (sockaddr *)&saRemote, &nRemoteLen );
// 接受到新连接之后,为它创建一个per_handle数据,并将他们关联到完成端口对象
PPER_HANDLE_DATA pPerHandle = ( PPER_HANDLE_DATA )::GlobalAlloc( GPTR, sizeof( PPER_HANDLE_DATA ) ); if( pPerHandle == NULL ) { break; }
pPerHandle->s = sRemote;
memcpy( &pPerHandle->addr, &saRemote, nRemoteLen );
::CreateIoCompletionPort( ( HANDLE)pPerHandle->s, hIocp, (DWORD)pPerHandle, 0 );
// 投递一个接受请求
PPER_IO_DATA pIoData = ( PPER_IO_DATA )::GlobalAlloc( GPTR, sizeof( PPER_IO_DATA ) ); if( pIoData == NULL ) { break; }
pIoData->nOperationType = OP_READ;
WSABUF buf; buf.buf = pIoData->buf; buf.len = BUFFER_SIZE; DWORD dwRecv = 0; DWORD dwFlags = 0;
::WSARecv( pPerHandle->s, &buf, 1, &dwRecv, &dwFlags, &pIoData->ol, NULL );
}
//////////////////////////////////////////////////////////////////////////
ERROR_PROC: WSACleanup(); //////////////////////////////////////////////////////////////////////////
return 0;
}
/******************************************************************
* 函数介绍:处理完成端口对象事件的线程 * 输入参数: * 输出参数: * 返回值 : *******************************************************************/ DWORD WINAPI ServerThread( LPVOID lpParam ) { HANDLE hIocp = ( HANDLE )lpParam; if( hIocp == NULL ) { return -1; }
DWORD dwTrans = 0;
PPER_HANDLE_DATA pPerHandle; PPER_IO_DATA pPerIo; while( TRUE ) { // 在关联到此完成端口的所有套接字上等待I/O完成 BOOL bRet = ::GetQueuedCompletionStatus( hIocp, &dwTrans, (LPDWORD)&pPerHandle, (LPOVERLAPPED*)&pPerIo, WSA_INFINITE ); if( !bRet ) // 发生错误 { ::closesocket( pPerHandle->s ); ::GlobalFree( pPerHandle ); ::GlobalFree( pPerIo );
cout << "error" << endl;
continue; }
// 套接字被对方关闭
if( dwTrans == 0 && ( pPerIo->nOperationType == OP_READ || pPerIo->nOperationType&nb-sp;== OP_WRITE ) ) { ::closesocket( pPerHandle->s ); ::GlobalFree( pPerHandle ); ::GlobalFree( pPerIo );
cout << "client closed" << endl;
continue; }
switch ( pPerIo->nOperationType )
{ case OP_READ: // 完成一个接收请求 { pPerIo->buf[dwTrans] = '\0'; printf( "%s\n", pPerIo->buf );
// 继续投递接受操作
WSABUF buf; buf.buf = pPerIo->buf; buf.len = BUFFER_SIZE; pPerIo->nOperationType = OP_READ; DWORD dwRecv = 0; DWORD dwFlags = 0; ::WSARecv( pPerHandle->s, &buf, 1, &dwRecv, &dwFlags, &pPerIo->ol, NULL );
}
break; case OP_WRITE: case OP_ACCEPT: break;
}
}
return 0;
} |