seq2sparse对应于mahout中的org.apache.mahout.vectorizer.SparseVectorsFromSequenceFiles,从昨天跑的算法中的任务监控界面可以看到这一步包含了7个Job信息,分别是:(1)DocumentTokenizer(2)WordCount(3)MakePartialVectors(4)MergePartialVectors(5)VectorTfIdf Document Frequency Count(6)MakePartialVectors(7)MergePartialVectors。打印SparseVectorsFromSequenceFiles的参数帮助信息可以看到如下的信息:
- Usage:
- [--minSupport <minSupport> --analyzerName <analyzerName> --chunkSize
- <chunkSize> --output <output> --input <input> --minDF <minDF> --maxDFSigma
- <maxDFSigma> --maxDFPercent <maxDFPercent> --weight <weight> --norm <norm>
- --minLLR <minLLR> --numReducers <numReducers> --maxNGramSize <ngramSize>
- --overwrite --help --sequentialAccessVector --namedVector --logNormalize]
- Options
- --minSupport (-s) minSupport (Optional) Minimum Support. Default
- Value: 2
- --analyzerName (-a) analyzerName The class name of the analyzer
- --chunkSize (-chunk) chunkSize The chunkSize in MegaBytes. 100-10000 MB
- --output (-o) output The directory pathname for output.
- --input (-i) input Path to job input directory.
- --minDF (-md) minDF The minimum document frequency. Default
- is 1
- --maxDFSigma (-xs) maxDFSigma What portion of the tf (tf-idf) vectors
- to be used, expressed in times the
- standard deviation (sigma) of the
- document frequencies of these vectors.
- Can be used to remove really high
- frequency terms. Expressed as a double
- value. Good value to be specified is 3.0.
- In case the value is less then 0 no
- vectors will be filtered out. Default is
- -1.0. Overrides maxDFPercent
- --maxDFPercent (-x) maxDFPercent The max percentage of docs for the DF.
- Can be used to remove really high
- frequency terms. Expressed as an integer
- between 0 and 100. Default is 99. If
- maxDFSigma is also set, it will override
- this value.
- --weight (-wt) weight The kind of weight to use. Currently TF
- or TFIDF
- --norm (-n) norm The norm to use, expressed as either a
- float or "INF" if you want to use the
- Infinite norm. Must be greater or equal
- to 0. The default is not to normalize
- --minLLR (-ml) minLLR (Optional)The minimum Log Likelihood
- Ratio(Float) Default is 1.0
- --numReducers (-nr) numReducers (Optional) Number of reduce tasks.
- Default Value: 1
- --maxNGramSize (-ng) ngramSize (Optional) The maximum size of ngrams to
- create (2 = bigrams, 3 = trigrams, etc)
- Default Value:1
- --overwrite (-ow) If set, overwrite the output directory
- --help (-h) Print out help
- --sequentialAccessVector (-seq) (Optional) Whether output vectors should
- be SequentialAccessVectors. If set true
- else false
- --namedVector (-nv) (Optional) Whether output vectors should
- be NamedVectors. If set true else false
- --logNormalize (-lnorm) (Optional) Whether output vectors should
- be logNormalize. If set true else false
在昨天算法的终端信息中该步骤的调用命令如下:
- ./bin/mahout seq2sparse -i /home/mahout/mahout-work-mahout/20news-seq -o /home/mahout/mahout-work-mahout/20news-vectors -lnorm -nv -wt tfidf
我们只看对应的参数,首先是-lnorm 对应的解释为输出向量是否要使用log函数进行归一化(设置则为true),-nv解释为输出向量被设置为named 向量,这里的named是啥意思?(暂时不清楚),-wt tfidf解释为使用权重的算法,具体参考http://zh.wikipedia.org/wiki/TF-IDF 。
第(1)步在SparseVectorsFromSequenceFiles的253行的:
- DocumentProcessor.tokenizeDocuments(inputDir, analyzerClass, tokenizedPath, conf);
这里进入可以看到使用的Mapper是:SequenceFileTokenizerMapper,没有使用Reducer。Mapper的代码如下:
- protected void map(Text key, Text value, Context context) throws IOException, InterruptedException {
- TokenStream stream = analyzer.reusableTokenStream(key.toString(), new StringReader(value.toString()));
- CharTermAttribute termAtt = stream.addAttribute(CharTermAttribute.class);
- StringTuple document = new StringTuple();
- stream.reset();
- while (stream.incrementToken()) {
- if (termAtt.length() > 0) {
- document.add(new String(termAtt.buffer(), 0, termAtt.length()));
- }
- }
- context.write(key, document);
- }
该Mapper的setup函数主要设置Analyzer的,关于Analyzer的api参考:http://lucene.apache.org/core/3_0_3/api/core/org/apache/lucene/analysis/Analyzer.html ,其中在map中用到的函数为reusableTokenStream(String fieldName, Reader reader) :Creates a TokenStream that is allowed to be re-used from the previous time that the same thread called this method.
编写下面的测试程序:
- package mahout.fansy.test.bayes;
- import java.io.IOException;
- import java.io.StringReader;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.io.Text;
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.analysis.TokenStream;
- import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
- import org.apache.mahout.common.ClassUtils;
- import org.apache.mahout.common.StringTuple;
- import org.apache.mahout.vectorizer.DefaultAnalyzer;
- import org.apache.mahout.vectorizer.DocumentProcessor;
- public class TestSequenceFileTokenizerMapper {
- /**
- * @param args
- */
- private static Analyzer analyzer = ClassUtils.instantiateAs("org.apache.mahout.vectorizer.DefaultAnalyzer",
- Analyzer.class);
- public static void main(String[] args) throws IOException {
- testMap();
- }
- public static void testMap() throws IOException{
- Text key=new Text("4096");
- Text value=new Text("today is also late.what about tomorrow?");
- TokenStream stream = analyzer.reusableTokenStream(key.toString(), new StringReader(value.toString()));
- CharTermAttribute termAtt = stream.addAttribute(CharTermAttribute.class);
- StringTuple document = new StringTuple();
- stream.reset();
- while (stream.incrementToken()) {
- if (termAtt.length() > 0) {
- document.add(new String(termAtt.buffer(), 0, termAtt.length()));
- }
- }
- System.out.println("key:"+key.toString()+",document"+document);
- }
- }
得出的结果如下:
- key:4096,document[today, also, late.what, about, tomorrow]
其中,TokenStream有一个stopwords属性,值为:[but, be, with, such, then, for, no, will, not, are, and, their, if, this, on, into, a, or, there, in, that, they, was, is, it, an, the, as, at, these, by, to, of],所以当遇到这些单词的时候就不进行计算了。
http://blog.csdn.net/fansy1990/article/details/10478515