- 深度学习-点击率预估-研究论文2024-09-14速读
sp_fyf_2024
深度学习人工智能
深度学习-点击率预估-研究论文2024-09-14速读1.DeepTargetSessionInterestNetworkforClick-ThroughRatePredictionHZhong,JMa,XDuan,SGu,JYao-2024InternationalJointConferenceonNeuralNetworks,2024深度目标会话兴趣网络用于点击率预测摘要:这篇文章提出了一种新
- CycleGAN学习:Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2017.
屎山搬运工
深度学习CycleGANGAN风格迁移
【导读】图像到图像的转换技术一般需要大量的成对数据,然而要收集这些数据异常耗时耗力。因此本文主要介绍了无需成对示例便能实现图像转换的CycleGAN图像转换技术。文章分为五部分,分别概述了:图像转换的问题;CycleGAN的非成对图像转换原理;CycleGAN的架构模型;CycleGAN的应用以及注意事项。图像到图像的转换涉及到生成给定图像的新的合成版本,并进行特定的修改,例如将夏季景观转换为冬季
- arXiv综述论文“Graph Neural Networks: A Review of Methods and Applications”
硅谷秋水
自动驾驶
arXiv于2019年7月10日上载的GNN综述论文“GraphNeuralNetworks:AReviewofMethodsandApplications“。摘要:许多学习任务需要处理图数据,该图数据包含元素之间的丰富关系信息。建模物理系统、学习分子指纹、预测蛋白质界面以及对疾病进行分类都需要一个模型从图输入学习。在其他如文本和图像之类非结构数据学习的领域中,对提取的结构推理,例如句子的依存关系
- C# 网口通信(通过Sockets类)
萨达大
c#服务器网络网口通讯上位机
文章目录1.引入Sockets2.定义TcpClient3.连接网口4.发送数据5.关闭连接1.引入SocketsusingSystem.Net.Sockets;2.定义TcpClientprivateTcpClienttcpClient;//TcpClient实例privateNetworkStreamstream;//网络流,用于与服务器通信3.连接网口tcpClient=newTcpClie
- Centos9 网卡配置文件
码哝小鱼
linux运维linux网络
1、Centosstream9网络介结Centos以前版本,NetworkManage以ifcfg格式存储网络配置文件在/etc/sysconfig/networkscripts/目录中。但是,Centossteam9现已弃用ifcfg格式,默认情况下,NetworkManage不再创建此格式的新配置文件。从Centossteam9开始采用密钥文件格式(基于INI文件),NetworkManage
- 使用C++编写接口调用PyTorch模型,并生成DLL供.NET使用
编程日记✧
pytorch人工智能python.netc#c++
一、将PyTorch模型保存为TorchScript格式1)构造一个pytorch2TorchScript.py,示例代码如下:importtorchimporttorch.nnasnnimportargparsefromnetworks.seg_modelingimportmodelasViT_segfromnetworks.seg_modelingimportCONFIGSasCONFIGS_
- 深度学习算法在图算法中的应用(图卷积网络GCN和图自编码器GAE)
大嘤三喵军团
深度学习算法网络
深度学习算法在图算法中的应用1.图卷积网络(GraphConvolutionalNetworks,GCN)图卷积网络(GCN)是一种将卷积神经网络(ConvolutionalNeuralNetworks,CNN)推广到图结构数据的方法。GCN被广泛用于节点分类、图分类、链接预测等任务。优势和好处灵活性:GCN可以处理不规则和不均匀的数据结构,比如社交网络、分子结构、交通网络等。高效性:GCN使用局
- SDN系统方法 | 7. 叶棘网络
DeepNoMind
随着互联网和数据中心流量的爆炸式增长,SDN已经逐步取代静态路由交换设备成为构建网络的主流方式,本系列是免费电子书《Software-DefinedNetworks:ASystemsApproach》的中文版,完整介绍了SDN的概念、原理、架构和实现方式。原文:Software-DefinedNetworks:ASystemsApproach第7章叶棘网络(Leaf-SpineFabric)本章介
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- ITU-T V-Series Recommendations
技术无疆
Othercompressionstandardsprotocolsinterfacenetworkalgorithm
TheITU-TV-SeriesRecommendationsonDatacommunicationoverthetelephonenetworkspecifytheprotocolsthatgovernapprovedmodemcommunicationstandardsandinterfaces.[1]Note:thebisandtersuffixesareITU-Tstandarddesig
- 关于深度森林的一点理解
Y.G Bingo
机器学习方法机器学习神经网络
2017年年初,南京大学周志华老师上传了一篇名为:DeepForest:TowardsAnAlternativetoDeepNeuralNetworks的论文,一石激起千层浪,各大媒体纷纷讨论着,这似乎意味着机器学习的天色要变,实则不然,周志华老师通过微博解释道,此篇论文不过是为机器学习打开了另一扇窗,是另一种思维,而不是真的去替代深度神经网络(DNN)。下面我就简单概括一下我对这篇论文的理解,如
- #240 难度继续增强
钤鱼摆摆
第五个period已经开始了一周了,第一周刚开始就有很多东西要学。这个period对我来说,对所有CS的学生来说最难的应该就是Networks&Graphs了吧。这门课是建立在上个period学的Logic&Sets的基础上,因为上个period学得还行,所以第一周的内容还勉强可以接受。主要比较难的是习题课上面TA给我们讲解的习题,今天下午光是讲一道只有一两句话长的题就过去了一个小时,剩下半个小时
- Electronic commerce
oostyle
ExchangeWebAccess
ElectronicCommerce,commonlyknownas(electronicmarketing)e-commerceoreCommerce,consistsofthebuyingandsellingofproductsorservicesoverelectronicsystemssuchastheInternetandothercomputernetworks.Theamountof
- AI领域常用缩写词
大道不孤,众行致远
技术杂谈人工智能
学习AI的最大收获是英文水平长了长,多认识了几个单词:人工智能(ArtificialIntelligence,AI)通用人工智能(ArtificialGeneralIntelligence,AGI)生成式AI(AIgeneratedcontent,AIGC)智能体(Agent)人工神经网络(ArtificialNeuralNetworks,ANN)卷积神经网络(ConvolutionalNeura
- 深度学习论文精读(7):MTCNN
hwl19951007
计算机视觉论文精读
深度学习论文精读(7):MTCNN论文地址:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks译文地址:https://zhuanlan.zhihu.com/p/37884254参考博文1:https://zhuanlan.zhihu.com/p/38520597官方地址:https://kpzhan
- MTCNN人脸检测算法
samuelwang_ccnu
深度学习
人脸检测是指识别数字图像中的人脸。人脸检测可以视为目标检测的一种特殊情况。在目标检测中,任务是查找图像中特定类的所有对象的位置和大小。例如行人和汽车。在人脸检测中应用较广的算法就是MTCNN(Multi-taskCascadedConvolutionalNetworks的缩写)。MTCNN算法是一种基于深度学习的人脸检测和人脸对齐方法,它可以同时完成人脸检测和人脸对齐的任务,相比于传统的算法,它的
- 人脸识别算法MTCNN论文解读
纸上得来终觉浅~
图像处理paper阅读人脸识别mtcnn
论文名称:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks论文地址:https://www.lao-wang.com/wp-content/uploads/2017/07/1604.02878.pdf1、MTCNN原理MTCNN,Multi-taskconvolutionalneuralnetwor
- SOAP HTTP Binding
wjs2024
开发语言
SOAPHTTPBindingIntroductionSOAP(SimpleObjectAccessProtocol)isaprotocolspecificationforexchangingstructuredinformationintheimplementationofwebservicesincomputernetworks.ItusesXMLInformationSetforitsmes
- 计算机视觉之 GSoP 注意力模块
Midsummer-逐梦
计算机视觉(CV)深度学习机器学习人工智能
计算机视觉之GSoP注意力模块一、简介GSopBlock是一个自定义的神经网络模块,主要用于实现GSoP(GlobalSecond-orderPooling)注意力机制。GSoP注意力机制通过计算输入特征的协方差矩阵,捕捉全局二阶统计信息,从而增强模型的表达能力。原论文:《GlobalSecond-orderPoolingConvolutionalNetworks(arxiv.org)》二、语法和
- 【学习笔记】卫星通信NTN 3GPP标准化进展分析(六)- 参考标准
瑶光守护者
IoT-NTN卫星通信学习笔记NTN3GPP卫星通信
一、引言:本文来自3GPPJoernKrause,3GPPMCC(May14,2024)Non-TerrestrialNetworks(NTN)(3gpp.org)本文总结了NTN标准化进程以及后续的研究计划,是学习NTN协议的入门。【学习笔记】卫星通信NTN3GPP标准化进展分析(一)-基本信息-CSDN博客https://blog.csdn.net/u011376987/article/det
- sentence-bert_pytorch语义文本相似度算法模型
技术瘾君子1573
bertpytorch人工智能语义文本相似度模型
目录Sentence-BERT论文模型结构算法原理环境配置Docker(方法一)Dockerfile(方法二)Anaconda(方法三)数据集训练单机多卡单机单卡推理result精度应用场景算法类别热点应用行业源码仓库及问题反馈参考资料Sentence-BERT论文Sentence-BERT:SentenceEmbeddingsusingSiameseBERT-Networkshttps://ar
- 图神经网络实战(18)——消息传播神经网络
盼小辉丶
图神经网络从入门到项目实战pytorch深度学习图神经网络
图神经网络实战(18)——消息传播神经网络0.前言1.消息传播神经网络2.实现MPNN框架小结系列链接0.前言我们已经学习了多种图神经网络(GraphNeuralNetworks,GNN)变体,包括图卷积网络(GraphConvolutionalNetwork,GCN)、图注意力网络(GraphAttentionNetworks,GAT)和GraphSAGE等。在本节中,我们将对这些变体GNN结构
- 对BBC 的 DDoS 攻击可能是历史上最大的
Eliza_卓云
上周针对BBC网站的分布式拒绝服务攻击可能是历史上规模最大的一次。一个自称为NewWorldHacking的组织表示,攻击达到了602Gbps。如果准确的话,这几乎是ArborNetworks去年记录的334Gbps记录的两倍。“其中一些信息仍有待确认,”A10Networks的产品营销总监保罗尼科尔森说,该公司是一家帮助保护公司免受DDoS攻击的安全供应商。“如果它被证实,这将是有记录以来最大的
- CNN网络简介
吕不韦
卷积神经网络简介(ConvolutionalNeuralNetworks,简称CNN)卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(ConvolutionalNeuralNetworks-简称CNN)。现在,CNN
- 深入理解PyTorch中的MessagePassing
小桥流水---人工智能
深度学习机器学习算法人工智能pytorch人工智能python
深入理解PyTorch中的MessagePassing图神经网络(GraphNeuralNetworks,简称GNNs)在近年来已成为处理图形数据的一种强大工具,广泛应用于社交网络分析、蛋白质结构预测、知识图谱增强等多个领域。PyTorchGeometric(PyG)是基于PyTorch的一个库,专为图神经网络的研究和实现而设计。在PyG中,MessagePassing类是实现图神经网络层的核心组
- 如何检查端口占用:netstat和lsof指令
Mark White
服务器运维
在网络故障排查和系统管理中,检查端口占用情况是一项常见且重要的任务。本文将详细介绍如何使用netstat和lsof这两个强大的工具来检查端口占用和相关服务。1.使用netstat查看端口占用netstat(networkstatistics)是一个用于显示网络连接、路由表、接口统计等信息的命令行工具。1.1最常用的netstat命令netstat-an这是最常用的形式,让我们解析其参数:-a:显示
- What our digital social networks say about us? 朋友圈真能无限大?
MM2017
Theyturnupweeklyinmyinbox,gnawingawayatmysoul.Thekindwords,thesmilingfaces,theego-strokinginvitationstoconnect,allofwhichIguiltilyignore.它们每个星期在我的邮箱里出现,让我的灵魂饱受折磨,这些友善的文字和笑脸,放低身段以求建立往来的邀请函,我因忽视它们的存在而感到
- 【技术博客】生成式对抗网络模型综述
MomodelAI
34-生成式对抗网络模型综述作者:张真源GANGAN简介生成式对抗网络(Generativeadversarialnetworks,GANs)的核心思想源自于零和博弈,包括生成器和判别器两个部分。生成器接收随机变量并生成“假”样本,判别器则用于判断输入的样本是真实的还是合成的。两者通过相互对抗来获得彼此性能的提升。判别器所作的其实就是一个二分类任务,我们可以计算他的损失并进行反向传播求出梯度,从而
- Kesci:Tensorflow 实现 LSTM——时间序列预测
萧居士
TensorflowLSTM时间序列预测
LSTMhttps://www.kesci.com/home/project/5a38a9c00e1fc52691fd9c72这篇文章将讲解如何使用lstm进行时间序列方面的预测,重点讲lstm的应用,原理部分可参考以下两篇文章:UnderstandingLSTMNetworksLSTM学习笔记编程环境:python3.7,tensorflow1.14本文所用的数据集来自于kesci平台,由云脑机
- 卷积神经网络-解释1
weixin_33749242
人工智能数据结构与算法
[翻译]神经网络的直观解释2017/07/2717:36这篇文章原地址为AnIntuitiveExplanationofConvolutionalNeuralNetworks,卷积神经网络的讲解非常通俗易懂。什么是卷积神经网络?为什么它们很重要?卷积神经网络(ConvNets或者CNNs)属于神经网络的范畴,已经在诸如图像识别和分类的领域证明了其高效的能力。卷积神经网络可以成功识别人脸、物体和交通
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息