1. 选择排序
选择排序的基本思想是遍历数组的过程中,以 i 代表当前需要排序的序号,则需要在剩余的 [i…n-1] 中找出其中的最小值,然后将找到的最小值与 i 指向的值进行交换。因为每一趟确定元素的过程中都会有一个选择最大值的子流程,所以人们形象地称之为选择排序。
举个实例来看看:
复制内容到剪贴板
代码:
初始: [38, 17, 16, 16, 7, 31, 39, 32, 2, 11]
i = 0: [2 , 17, 16, 16, 7, 31, 39, 32, 38 , 11] (0th [38]<->8th [2])
i = 1: [2, 7 , 16, 16, 17 , 31, 39, 32, 38, 11] (1st [38]<->4th [17])
i = 2: [2, 7, 11 , 16, 17, 31, 39, 32, 38, 16 ] (2nd [11]<->9th [16])
i = 3: [2, 7, 11, 16, 17, 31, 39, 32, 38, 16] ( 无需交换 )
i = 4: [2, 7, 11, 16, 16 , 31, 39, 32, 38, 17 ] (4th [17]<->9th [16])
i = 5: [2, 7, 11, 16, 16, 17 , 39, 32, 38, 31 ] (5th [31]<->9th [17])
i = 6: [2, 7, 11, 16, 16, 17, 31 , 32, 38, 39 ] (6th [39]<->9th [31])
i = 7: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )
i = 8: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )
i = 9: [2, 7, 11, 16, 16, 17, 31, 32, 38, 39] ( 无需交换 )
由例子可以看出,选择排序随着排序的进行( i 逐渐增大),比较的次数会越来越少,但是不论数组初始是否有序,选择排序都会从 i 至数组末尾进行一次选择比较,所以给定长度的数组,选择排序的比较次数是固定的: 1 + 2 + 3 + …. + n = n * (n + 1) / 2 ,而交换的次数则跟初始数组的顺序有关,如果初始数组顺序为随机,则在最坏情况下,数组元素将会交换 n 次,最好的情况下则可能 0 次(数组本身即为有序)。
由此可以推出,选择排序的时间复杂度和空间复杂度分别为 O(n2 ) 和 O(1) (选择排序只需要一个额外空间用于数组元素交换)。
实现代码:
复制内容到剪贴板
代码:
/**
* Selection Sorting
*/
SELECTION(new Sortable() {
public <T extends Comparable<T>> void sort(T[] array, boolean ascend) {
int len = array.length;
for (int i = 0; i < len; i++) {
int selected = i;
for (int j = i + 1; j < len; j++) {
int compare = array[j].compareTo(array[selected]);
if (compare != 0 && compare < 0 == ascend) {
selected = j;
}
}
exchange(array, i, selected);
}
}
})