匈牙利算法

原文转载:click here~~

匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。

-------等等,看得头大?那么请看下面的版本:

通过数代人的努力,你终于赶上了剩男剩女的大潮,假设你是一位光荣的新世纪媒人,在你的手上有N个剩男,M个剩女,每个人都可能对多名异性有好感(惊讶-_-||暂时不考虑特殊的性取向),如果一对男女互有好感,那么你就可以把这一对撮合在一起,现在让我们无视掉所有的单相思(好忧伤的感觉快哭了),你拥有的大概就是下面这样一张关系图,每一条连线都表示互有好感。

匈牙利算法_第1张图片

本着救人一命,胜造七级浮屠的原则,你想要尽可能地撮合更多的情侣,匈牙利算法的工作模式会教你这样做:

===============================================================================

 先试着给1号男生找妹子,发现第一个和他相连的1号女生还名花无主,got it,连上一条蓝线

匈牙利算法_第2张图片

===============================================================================

接着给2号男生找妹子,发现第一个和他相连的2号女生名花无主,got it

匈牙利算法_第3张图片

===============================================================================

接下来是3号男生,很遗憾1号女生已经有主了,怎么办呢?

我们试着给之前1号女生匹配的男生(也就是1号男生)另外分配一个妹子。

(黄色表示这条边被临时拆掉)

匈牙利算法_第4张图片

与1号男生相连的第二个女生是2号女生,但是2号女生也有主了,怎么办呢?我们再试着给2号女生的原配(发火发火)重新找个妹子(注意这个步骤和上面是一样的,这是一个递归的过程)


匈牙利算法_第5张图片

此时发现2号男生还能找到3号女生,那么之前的问题迎刃而解了,回溯回去

2号男生可以找3号妹子~~~                  1号男生可以找2号妹子了~~~                3号男生可以找1号妹子

匈牙利算法_第6张图片匈牙利算法_第7张图片匈牙利算法_第8张图片

所以第三步最后的结果就是:

匈牙利算法_第9张图片

===============================================================================

 接下来是4号男生,很遗憾,按照第三步的节奏我们没法给4号男生出来一个妹子,我们实在是无能为力了……香吉士同学走好。

===============================================================================

这就是匈牙利算法的流程,其中找妹子是个递归的过程,最最关键的字就是“”字

其原则大概是:有机会上,没机会创造机会也要上

代码:

bool path(int x)
{
    for(int j=1; j<=m; ++j)    ///扫描每个妹子
    {
        if(line[x][j]==true&&used[j]==false)
        {
            ///如果有暧昧并且还没有标记过(这里标记的意思是这次查找曾试图改变过该妹子的归属问题,
            ///但是没有成功,所以就不用瞎费工夫了)
            used[j]=true;
            if(girl[j]==false||path(girl[j]))  ///名花无主或者能腾出个位置来,这里使用递归
            {
                girl[j]=x;
                return true;
            }
        }
    }
    return false;
}

for(i=1;i<=n;i++)  
{  
    int ans=0;
    memset(used,0,sizeof(used));    ///这个在每一步中清空  
    if(find(i)) ans++;  
}  


你可能感兴趣的:(匈牙利算法,二分图匹配)