- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 第六篇:数字逻辑的“矩阵革命”——域控制器中的组合电路设计
天天爱吃肉8218
学习笔记矩阵线性代数汽车笔记
副标题:用卡诺图破解车身域控制器的逻辑迷宫,揭秘华为DriveONE的“数字特工”▍开篇:黑客帝国世界观映射>"WelcometotheRealWorld."——Morpheus>在数字逻辑的世界里,组合电路就是构建Matrix的底层代码。当新能源汽车的域控制器需要同时处理车门锁、灯光控制、热管理信号时,就像Neo同时躲避多个特工的追击——只有最优化的逻辑设计,才能让系统在纳秒级响应中游刃有余。核
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- 《探秘Hogwild!算法:无锁并行SGD的神奇之路》
人工智能深度学习
在深度学习和机器学习的领域中,优化算法的效率和性能一直是研究的重点。Hogwild!算法作为一种能够实现无锁并行随机梯度下降(SGD)的创新方法,受到了广泛关注。下面就来深入探讨一下Hogwild!算法是如何实现这一壮举的。基础原理铺垫随机梯度下降(SGD)算法是基于梯度下降算法产生的常见优化算法。其目标是优化损失函数,通过对每一个超参数求偏导得到当前轮的梯度,然后向梯度的反方向更新,不断迭代以获
- Eigen3的库使用
憨憨2号
Eigen3c++
文章目录eigen3lib的使用向量向量一元操作向量二元操作共轭矩阵矩阵赋值转置矩阵块操作取行取列取任意大小的块矩阵分解Cholesky分解坐标变换坐标轴旋转旋转矩阵旋转四元数欧拉角旋转向量数据类型转化double数字转化为矩阵eigen3lib的使用向量Eigen::Vector3fu;//3行*1列列向量向量一元操作u.norm();//向量的模u.transpose()//向量的转置向量二元
- 分布式训练三大并行策略:数据、模型与流水线并行的本质解析
WHCIS
#分布式训练人工智能与机器学习分布式人工智能深度学习
截至2023年,大型语言模型的参数量已突破万亿级别(如GooglePaLM2达到3400亿参数),单卡显存容量(NVIDIAA10080GB)与计算能力(312TFLOPS)面临严峻挑战。分布式训练通过多维度并行策略实现:算力维度:聚合多卡计算能力存储维度:分布式参数存储通信维度:优化数据传输路径本文将深入剖析三大并行策略的数学本质。一、数据并行:分布式优化的数学基础1.1同步SGD的收敛性证明定
- 《深度解析:批量、随机和小批量梯度下降的区别与应用》
人工智能深度学习
在机器学习和深度学习的领域中,梯度下降算法是优化模型参数的核心工具之一。而批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD)是梯度下降算法的三种常见变体,它们在计算效率、收敛速度和准确性等方面各有特点。原理与计算方式批量梯度下降(BGD):BGD在每次迭代时,都会使用整个训练数据集来计算损失函数的梯度,然后根据梯度更新模型参数。例如,若训练集中有1000个样本,那么每次迭代
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- 人工智能之推荐系统实战系列(协同过滤,矩阵分解,FM与DeepFM算法)
weixin_58351028
人工智能深度学习神经网络算法机器学习
一.推荐系统介绍和应用(1)推荐系统通俗解读推荐系统就是来了就别想走了。例如在大数据时代中京东越买越想买,抖音越刷越是自己喜欢的东西,微博越刷越过瘾。(2).推荐系统发展简介1)推荐系统无处不在,它是根据用户的行为决定推荐的内容。用户每天在互联网中都会留下足迹,这样就会越来越多的用户画像。2)为什么要推荐系统卖的好的商品就那几种,其它就不管了吗?答案是否定的。80%的销售来自20%的热门商品,要想
- 【算法】动态规划专题⑪ —— 区间DP python
查理零世
动态规划专题算法动态规划python
目录引入进入正题回归经典总结引入区间动态规划(区间DP)适用于解决涉及区间最优化的经典问题,如石子合并、最长回文子序列等。进入正题石子合并https://www.acwing.com/problem/content/284/有N堆石子排成一排,其编号为1,2,3,…,N。每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。每次只能合并相邻的两堆,合并的代价为这两堆石子的质量
- 拉格朗日乘数法算法详解及python实现
闲人编程
python算法python开发语言拉格朗日乘数法数学模型
目录一、拉格朗日乘数法算法详解1.1基本思想1.2数学推导1.3算法步骤1.4算法在编程中的实现二、案例分析案例一:二维最优化问题——求f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2在约束x+y=1x+y=1x+y=1下的极值2.1.1问题描述2.1.2数学模型构建2.1.3Python代码实现案例二:乘积最大化问题——求f(x,y)=xyf(x,y)=xyf(x,y
- 【人工智能】Python中的深度学习优化器:从SGD到Adam
蒙娜丽宁
Python杂谈人工智能人工智能python深度学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传统的随机梯度下降(SGD)到现代的自适应优化器(如Adam)。我们将深入探讨每种优化器的原理、优缺点,并通过Python实现
- AI基础 -- AI学习路径图
sz66cm
人工智能学习
人工智能从数学到大语言模型构建教程第一部分:AI基础与数学准备1.绪论:人工智能的过去、现在与未来人工智能的定义与发展简史从符号主义到统计学习、再到深度学习与大模型的变迁本书内容概览与学习路径指引2.线性代数与矩阵运算向量与矩阵的基本概念矩阵分解(特征值分解、奇异值分解)张量运算简介(为后续深度学习做准备)在机器学习和深度学习中的应用示例3.概率论与统计基础随机变量、分布与期望方差贝叶斯理论与最大
- Yocto Project的后坐力与未来可能性分析
嵌入式Jerry
Yocto嵌入式硬件linux架构学习职场和发展经验分享面试
一、YoctoProject概述YoctoProject(简称Yocto)是一款基于OpenEmbedded开发环境的开源项目,致力于为嵌入式系统提供高自定义性的Linux发行模型。通过自定义属于自己的BSP层,开发者可以根据需要构建特定硬件环境下最优化的Linux分发版。Yocto目前已被应用于各大嵌入式行业,包括通信、应用端、自动化设备、智能系统等多种领域。目前,它的发展流向深刻影响着未来的嵌
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 《从入门到精通:蓝桥杯编程大赛知识点全攻略》(八)-摘花生、地宫取宝
程序猿零零漆
蓝桥杯蓝桥杯算法java
前言在许多算法问题中,动态规划是一种非常有效的技巧,能够在处理最优化问题时提供显著的性能提升。通过将问题拆解成更小的子问题,并利用已解决的子问题来构建最终解,动态规划能够显著减少计算量。在本文中,我们将通过具体的应用案例,探讨如何使用动态规划来解决“摘花生”和“地宫取宝”这两个经典问题。摘花生HelloKitty想摘点花生送给她喜欢的米老鼠。她来到一片有网格状道路的矩形花生地(如下图),从西北角进
- 【人工智能专栏】Stochastic Gradient Descent (SGD) 随机梯度下降
manylinux
深度学习机器学习人工智能机器学习逻辑回归
StochasticGradientDescent(SGD)随机梯度下降IntroducingSGDAI:StochasticGradientDescent(SGD)isapopularoptimizationalgorithmusedinmachinelearningforfindingtheminimumofacostfunction.Itisavariantofthegradientdesc
- Python-玩转数据-凸优化
人猿宇宙
python数据挖掘人工智能
一、说明最优化问题目前在机器学习,数据挖掘等领域应用非常广泛,因为机器学习简单来说,主要做的就是优化问题,先初始化一下权重参数,然后利用优化方法来优化这个权重,直到准确率不再是上升,迭代停止,那到底什么是最优化问题呢?比如你要从上海去北京,你可以选择搭飞机,或者火车,动车,但只给你500块钱,要求你以最快的时间到达,其中到达的时间就是优化的目标,500块钱是限制条件,选择动车,火车,或者什么火车都
- 拉格朗日乘数法算法详解Python实现
闲人编程
python算法python开发语言偏导拉格朗日乘数法数学模型
目录一、拉格朗日乘数法算法详解1.1基本思想1.2数学推导1.3算法步骤1.4算法在编程中的实现二、案例分析案例一:二维最优化问题——求f(x,y)=x2+y2f(x,y)=x^2+y^2f(x,y)=x2+y2在约束x+y=1x+y=1x+y=1下的极值2.1.1问题描述2.1.2数学模型构建2.1.3算法流程图(Mermaid语法)2.1.4Python代码实现案例二:乘积最大化问题——求f(
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
知识鱼丸
machinelearning机器学习
自定义数据集:继承torch.utils.data.Dataset类创建自定义数据集,并重写__len__和__getitem__方法。定义逻辑回归模型:继承nn.Module类,定义一个线性层,并在forward方法中应用sigmoid激活函数。训练模型:使用二元交叉熵损失函数BCELoss和随机梯度下降优化器SGD进行训练。保存模型:使用torch.save保存模型的参数。加载模型并预测:加载
- 深度学习篇---张量&数据流动处理
Ronin-Lotus
深度学习篇深度学习人工智能pythonTensorFlowPytorch张量数据流动处理
文章目录前言第一部分:张量张量的基本概念1.维度标量(0维)向量(1维)矩阵(2维)三维张量2.形状张量运算1.基本运算加法减法乘法除法2.广播3.变形4.转置5.切片6.拼接7.矩阵分解8.梯度运算:深度学习框架中的张量运算1.自动求导2.硬件加速3.高度优化第二部分:数据流动与处理1.磁盘(硬盘或固态硬盘)读取数据写入数据2.内存(RAM)加载程序和数据数据交换3.缓存CPU缓存磁盘缓存4.数
- DynamicPlanning动态规划学习笔记
kxwsspz2001
笔记动态规划算法
动态规划动态规划的特点是求解决策过程最优化的过程。适用于求解将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。各阶段决策依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列。我们可以从决策序列中找到最优解LeetCode53给定一个整数数组nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。示例
- yolov5--hsv增强,hyp超参数,
yuyuyue249
YOLO计算机视觉机器学习
一.hyp超参数:文件位置:data/hyps/hyp.scratch-low.yaml具体如下:lr0:0.01#initiallearningrate(SGD=1E-2,Adam=1E-3)lrf:0.01#finalOneCycleLRlearningrate(lr0*lrf)momentum:0.937#SGDmomentum/Adambeta1weight_decay:0.0005#op
- 《深度学习入门:梯度下降法全解析,小白必看!》
Lemon_wxk
深度学习
目录一、引言二、什么是梯度下降?2.1误差的计算2.2梯度的计算2.3参数更新2.4重复迭代三、梯度下降法的几种主要类型1.批量梯度下降(BatchGradientDescent)2.随机梯度下降(StochasticGradientDescent,SGD)3.小批量梯度下降(Mini-BatchGradientDescent)四、梯度下降的挑战与解决方案1.学习率的选择2.局部最小值与鞍点3.梯
- 自然语言处理-词嵌入 (Word Embeddings)
纠结哥_Shrek
自然语言处理人工智能
词嵌入(WordEmbedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有相近的表示。常见词嵌入方法基于矩阵分解的方法LatentSemanticAnalysis(LSA)LatentDirichletAllocation(LDA)非负矩阵分解(NMF)基于神经网络的方法Word2Vec(Google提
- 国科大-算法中的最优化方法-林
手板心里煎鱼吃
算法性能优化matlab
2024国科大-算法中的最优化方法-林刚考完,把复习资料也发出来,学弟学妹可以参考学习一下。总的来说不是很难,由于开卷转闭卷的原因,大部分都是原题,在ppt以及网上都能找到。考过内容汇总:A前面是几个填空题,主要考察凸函数,拟凸函数,单峰函数这些的图像判断,以及通过等高线图找到梯度方向(第一个ppt上的最后一页的那个图)。填空题主要就是考察这些基本概念。第二大题给了4个题目,让判断是属于哪种规划(
- 大模型部署工具 llama.cpp 介绍与安装使用
大模型柳儿
llama服务器人工智能web安全linux安全
1.大模型部署工具llama.cpp大模型的研究分为训练和推理两个部分。训练的过程,实际上就是在寻找模型参数,使得模型的损失函数最小化,推理结果最优化的过程。训练完成之后,模型的参数就固定了,这时候就可以使用模型进行推理,对外提供服务。llama.cpp(https://github.com/ggerganov/llama.cpp)主要解决的是推理过程中的性能问题。主要有两点优化:llama.cp
- opencv2.4中SVD分解的几种调用方法
weixin_34342992
人工智能matlabc#
原帖地址:http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解。奇异值分解(singularvaluedecomposition,SVD)是一种可靠地正交矩阵分解法,但它比QR分解法要花上近十倍的计算时间。在matlab中,[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵
- python在统计专业的应用_Python在计量经济与统计学中的应用
weixin_39851457
python在统计专业的应用
PythonforEconometricsandStatistics(Python在计量经济与统计学中的应用)【点击链接进入主页】。这套笔记将重点介绍Python在计量经济学与统计分析中的应用。内容涵盖Python基本数据类型,Numpy科学运算,Pandas数据分析,统计分析,蒙特卡洛过程,最优化过程,数据可视化功能,以及在计量经济与统计模型中的应用等。随后还将陆续推出统计学习在在量化金融中的应
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache