poj 2689解题报告(区间筛素数,经典)

 

Prime Distance
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4814   Accepted: 1282

Description

The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes.

这道题是学习素数筛法的经典,应用到了区间筛素数。具体思路是先筛出1到sqrt(2147483647)之间的所有素数,然后再通过已经晒好素数筛出给定区间的素数,关于筛素数的问题,我转载了一篇网上一个人总结的素数总结,里面就有关于筛大数区间的素数的算法。虽然说一切都已经具备了,但是这道题我第一次做的时候RUNTIME ERROR了,原因是声明变量的时候用了long,当数据比较大的时候会超,第二次我改成long long,这才A掉。。总之,还有很多要学的东西,继续努力吧!!

代码:

语言:c++

#include<iostream> using namespace std; long long prime[46500],prime1[1000010],pcount,p1count,in[46500],in1[1000010]; int main() { void getsprime(); getsprime();//构建1到46500(即sqrt(2147483647))之间的素数表 void getlprime(long L,long U); long long L,U; while(cin>>L>>U) { getlprime(L,U);//构造给定区间的素数表 if(p1count<2)//假如有筛出的素数中,素数的个数小于2个,那么就一定不可能存在相邻的两个素数 { cout<<"There are no adjacent primes."<<endl; continue; } else { long long min=2147483647,max=-1; long long distant,xmin,ymin,xmax,ymax; for(long i=0;i<p1count-1;++i) { distant=prime1[i+1]-prime1[i]; if(distant<min)//找最小距离的位置 { min=distant; xmin=i; ymin=i+1; } if(distant>max)//找最大距离的位置 { max=distant; xmax=i; ymax=i+1; } } cout<<prime1[xmin]<<','<<prime1[ymin]<<" are closest, "<<prime1[xmax]<<','<<prime1[ymax]<<" are most distant."<<endl; } } return 0; } void getsprime()//快速筛小范围素数 { for(int i=2;i<46500;++i) in[i]=1; for(int i=2;i<46500;++i) { if(!in[i]) continue; for(int j=i*2;j<46500;j+=i) in[j]=0; } pcount=0; for(int i=2;i<46500;++i) if(in[i]) prime[pcount++]=i; } void getlprime(long L,long U) { if(U<46500)//假如区间的最大值就小于46500的话,那么之际用我们刚才求完的就好了 { p1count=0; for(int i=L;i<=U;++i) if(in[i]) prime1[p1count++]=i; } else//筛大数区间内的素数的核心部分 { long long k,size=U-L; for(long i=0;i<=size;++i) in1[i]=1; for(long i=0;i<=pcount&&prime[i]*prime[i]<=U;++i) { k=L/prime[i]; if(k*prime[i]<L) ++k; if(k<=1) ++k; while(k*prime[i]<=U) { in1[k*prime[i]-L]=0; ++k; } } p1count=0; for(long i=0;i<=size;++i) if(in1[i]) prime1[p1count++]=i+L; } }  

 

你可能感兴趣的:(properties,less,branch,output,distance,Numbers)