- LVI-SAM、VINS-Mono、LIO-SAM算法的阅读参考和m2dgr数据集上的复现(留作学习使用)
再坚持一下!!!
学习
ROS一键安装参考:ROS的最简单安装——鱼香一键安装_鱼香ros一键安装-CSDN博客opencv官网下载4.2.0参考:https://opencv.org/releases/page/3/nvidia驱动安装:ubuntu18.04安装显卡驱动-开始战斗-博客园cuda搭配使用1+2cuda安装1:Ubuntu18.04下安装CUDA_ubuntu18.04安装cuda-CSDN博客cuda
- Lumberyard:Lumberyard物理系统详解_2024-07-13_20-00-57.Tex
chenjj4003
游戏开发2lumberyardmicrosoft游戏引擎junit单元测试godot
Lumberyard:Lumberyard物理系统详解Lumberyard物理系统概述物理引擎介绍Lumberyard,亚马逊的游戏引擎,集成了强大的物理引擎,用于模拟游戏世界中的真实物理行为。其物理引擎基于PhysX,一个由NVIDIA开发的物理模拟技术,广泛应用于游戏开发中。PhysX支持复杂的物理交互,包括刚体动力学、软体物理、流体动力学等,能够为游戏提供逼真的物理效果。物理系统在Lumbe
- 如何使用MATLAB进行高效的GPU加速深度学习模型训练?
百态老人
matlab深度学习开发语言
要使用MATLAB进行高效的GPU加速深度学习模型训练,可以遵循以下步骤和策略:选择合适的GPU硬件:首先,确保您的计算机配备有支持CUDA的NVIDIAGPU,并且其计算能力至少为3.0或以上。可以通过gpuDevice命令检查GPU是否具备加速功能。安装必要的工具箱:确保安装了MATLAB的DeepLearningToolbox和ParallelComputingToolbox,这些工具箱提供
- 【技术解密】本地部署 DeepSeek-V3:完整指南
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能深度学习DeepSeek
目录引言运行环境需求下载与安装推理部署总结参考资源引言随着人工智能的快速发展,开源大模型正逐步改变着技术生态。DeepSeek-V3作为最新的开源大模型之一,不仅提供了强大的推理能力,同时也支持本地部署,使开发者可以灵活地进行自定义优化。本文将详细介绍如何在本地部署DeepSeek-V3,涵盖系统要求、安装步骤、模型转换及不同推理框架的应用。1.运行环境需求1.1硬件要求✅NVIDIAGPU(支持
- Matlab GPU加速技术
算法工程师y
matlab开发语言
1.GPU加速简介(1)为什么使用GPU加速?CPU擅长处理逻辑复杂的串行任务,而GPU拥有数千个流处理器,专为并行计算设计。对于大规模矩阵运算、深度学习训练或科学计算等任务,GPU加速可将计算速度提升数十至数百倍。(2)Matlab的GPU支持功能依赖:需安装ParallelComputingToolbox(并行计算工具箱)。硬件要求:支持CUDA的NVIDIAGPU(如Tesla、GeForc
- 通过docker-compose部署qwen2-vl-7b模型
scutshijie
docker容器运维语言模型
docker-compose部署qwen2-vl-7b模型准备工作docker-compose.yml遇到的报错在ONE-API设置测试脚本准备工作1、安装较新版本的docker-compose2、安装docker-nvidia3、下载qwen2-vl-7b的模型文件,参考:https://modelscope.cn/models/Qwen/Qwen2-VL-7B-Instruct4、建议先仔细查
- CUDA内核调优工具ncu的详细使用教程
东北豆子哥
CUDA数值计算/数值优化linux高性能计算
NVIDIANsightCompute(ncu)是一款用于CUDA内核性能分析的工具,帮助开发者优化CUDA程序。以下是详细的使用教程和示例说明。1.安装NVIDIANsightCompute确保已安装CUDAToolkit和NVIDIA驱动,然后从NVIDIA官网下载并安装NsightCompute。2.基本使用2.1启动ncu通过命令行启动ncu,基本语法如下:ncu[options][app
- PyTorch从入门到精通:探索深度学习新境界
lmtealily
深度学习pytorch人工智能
引言PyTorch作为当前最受欢迎的深度学习框架之一,凭借其动态计算图的独特设计和与Python生态的无缝集成,正重塑着人工智能开发的新范式1。从NVIDIA的研究实践到Meta的产业应用,PyTorch的价值已渗透至学术研究、工业部署的每个角落。本文将带领您从张量操作基础开始,逐步探索GPU加速、动态图机制、框架生态集成等高级主题,最终实现理论与实战的双重突破。一、PyTorch核心基础构建1.
- NVIDIA下载老版本驱动/CUDA/Video Codec SDK的链接,以及一些解码参数说明
landihao
linux
NVIDIA下载老版本驱动/CUDA/VideoCodecSDK的链接从别的网站抄过来的CUDA:https://developer.nvidia.com/cuda-toolkit-archive老驱动:https://www.nvidia.cn/geforce/drivers/VideoCodecSDKhttps://developer.nvidia.com/video-codec-sdk-ar
- PyTorch 环境搭建全攻略:CUDA/cuDNN 配置与多版本管理技巧
小诸葛IT课堂
pytorch人工智能python
一、环境搭建前的准备工作1.硬件兼容性检测#检查NVIDIAGPU型号nvidia-smi#验证CUDA支持的ComputeCapabilitylspci|grep-invidia#查看CUDA版本兼容性矩阵https://developer.nvidia.com/cuda-gpus2.系统环境要求组件推荐配置最低要求操作系统Ubuntu20.04LTSWindows10/11显卡驱动NVIDIA
- Rpm安装Docker
星光落入你灰蒙蒙的眼
Dockerdockerlinux运维容器kubernetes
如果您不能使用Docker的存储库来安装Docker,您可以下载.rpm文件并手动安装。每次要升级Docker引擎时,都需要下载一个新文件。官方文档1、登录https://download.docker.com/linux/centos/并选择您的CentOS版本。然后浏览到x86_64/stable/Packages/,下载您想要安装的Docker版本的.rpm文件#已Centos7.9为例mk
- centos 8 安装docker(RPM离线)——k8s和docker系列
名栩
#容器dockerlinuxcentos
如果无法使用Docker的存储库来安装Docker,可以下载.rpm版本的文件并手动安装。每次要升级DockerEngine时都需要下载一个新文件。前往https://download.docker.com/linux/centos/并选择CentOS版本。然后浏览x86_64/stable/Packages/并下载.rpm要安装的Docker版本的文件。笔记要安装每晚或测试(预发布)包,stab
- SD教程 : Stable Diffusion WebUI 云端部署
AI想象家
stablediffusiongptAI作画AIGC人工智能
StableDiffusionWebUI云端部署对于电脑配置无法满足StableDiffusionWebUI部署要求的朋友们,不用担心,我们可以租用GPU进行部署,在对比使用了多个云平台(矩池云/AutoDL/青椒云)之后,我强烈推荐揽睿星舟云平台,原因如下:•新用户注册即送无门槛3.8元优惠券,可免费白嫖2小时3090显卡。(用完重新注册一个号继续白嫖[呲牙])•价格合理,NVIDIA3090搭
- 【云原生】深入浅出 K8s 设备插件技术(Device Plugin)
碣石潇湘无限路
kubernetes容器云原生
摘要:Kubernetes提供了DevicePlugin机制,用于向kubelet上报硬件信息并配置容器资源。本文以NVIDIAGPUPlugin为例,通俗易懂并深入浅出地剖析注册、ListAndWatch、Allocate及kubelet管理流程,介绍常见问题和配置要点。先用一张原理概览图把DevicePlugin和kubelet之间的交互勾勒出来,让大家感受下插件技术的整体架构(示例以NVID
- c++调用python代码,使用gpu
AI改变视界
c++python开发语言
c++调用python,使用gpu加速1、首先要配置cuda和cudnn的环境1、cmd窗口下nvidia-smi,查看电脑可以支持的最高cuda版本。如果nvidia-smi报错,那么需要去配置一下环境,网上有类似案例。或者通过NVIDIA控制面板/系统信息/组件里查看cuda_xxxx.dll,上面有版本号。2、保证安装的cuda版本要小于电脑支持的版本号。我电脑最大支持cuda11,但是安装
- 路由器配置DHCP服务器
执笔忆长安
网络网络协议负载均衡
文章目录前言1.DHCP的优点2.DHCP的使用3.DHCP的工作原理4.dhcp服务器实验总结前言DHCP(动态主机配置协议)是一个局域网的网络协议。指的是由服务器控制一段IP地址范围,客户机登录服务器时就可以自动获得服务器分配的IP地址和子网掩码。默认情况下,DHCP作为WindowsServer的一个服务组件不会被系统自动安装,还需要管理员手动安装并进行必要的配置。1.DHCP的优点1.简化
- 一文讲清楚CUDA与PyTorch、GPU之间的关系
平凡而伟大.
编程语言人工智能架构设计pytorch人工智能python
CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一个并行计算平台和编程模型。它允许软件开发人员和研究人员利用NVIDIA的GPU(图形处理单元)进行高性能计算。CUDA提供了一系列API和工具,使得开发者能够编写和优化在GPU上运行的计算密集型任务。CUDA与PyTorch、GPU之间的关系可以这样理解:1.CUDA与GPU:GPU:是一种专门用于
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- 【python error】cannot import name ‘TorchDispatchMode‘ from ‘torch.utils._python_dispatch‘
Eternal-Student
JetsonOrinNXPythonpython开发语言
报错:cannotimportname‘TorchDispatchMode’from‘torch.utils._python_dispatch’(/home/nvidia/.conda/envs/pytorch/lib/python3.8/site-packages/torch/utils/_python_dispatch.py)File“/media/nvidia/Ubuntu/xxxxx/ev
- NVIDIA显卡型号有哪些?怎么知道自己电脑的型号?
可靠的豆包蟹同志
杂烩积累经验分享
NVIDIA显卡型号显卡分N卡和A卡,这个N卡指的是英伟达(NVIDIA),A卡之前是ATI(后来被AMD收购),现在的A卡指的就是AMD显卡。如果是为了玩游戏或者是学深度学习,选显卡肯定是要选N卡,因为A卡对于游戏优化的没有N卡好。(1)图中的GTX表示是英伟达的一个系列名称,全称叫GeForceGTX,GTX定位高端显卡系列,从低到高排名:GS/GT/GTS/GTX/RTX/Ultra,从20
- 构建centos7镜像调用外部gpu
周子青
linux
sudovi/etc/docker/daemon.json{"runtimes":{"nvidia":{"path":"/usr/bin/nvidia-container-runtime","runtimeArgs":[]}}}/*{"registry-mirrors":["https://9cpn8tt6.mirror.aliyuncs.com"]}{"runtimes":{"nvidia":{
- Centos安装GPU驱动,使用100元显卡玩转deepseek
white.tie
centoslinux运维
步骤1:安装NVIDIA驱动程序1.1安装显卡驱动编译工具yuminstallgccmakekernel-devel1.2安装显卡驱动依赖包yuminstallvulkan-loader1.3下载驱动安装https://www.nvidia.cn/drivers/details/220730/chmodu+xNVIDIA-Linux-x86_64-550.54.15.run./NVIDIA-Lin
- DeepSeek开源:FlashMLA深度解析:Hopper架构上的大模型推理革命
花生糖@
AIGC学习资料库AI·未来DeepSeek实用集开源架构FlashMLADeepSeek技术AIAIGC
2025年2月24日,DeepSeek以「开源周」首日发布的FlashMLA技术,重新定义了Hopper架构GPU在AI推理领域的性能极限。这款专为NVIDIAH800/H100系列优化的MLA(Multi-headLatentAttention)解码内核,通过突破性算法设计与硬件协同优化,在可变长度序列处理场景中实现了3000GB/s内存带宽与580TFLOPS计算吞吐的里程碑式突破。其开源策略
- RTX4090性能释放与优化全攻略
智能计算研究中心
其他
内容概要作为NVIDIAAdaLovelace架构的巅峰之作,RTX4090凭借24GBGDDR6X显存与16384个CUDA核心,重新定义了4K光追游戏的性能边界。本文将从硬件特性与软件优化双重视角切入,系统解析其性能释放路径:首先通过3DMarkTimeSpyExtreme压力测试数据(99.3%稳定性得分)验证基础算力;其次结合DLSS3.0帧生成技术与Reflex低延迟模式,实测《赛博朋克
- 嵌入式人工智能应用- 第七章 人脸识别
数贾电子科技
嵌入式人工智能应用人工智能
嵌入式人工智能应用`文章目录嵌入式人工智能应用1人脸识别1.1dlib介绍1.2dlib特点1.3dlib的安装与编译2人脸识别原理2.1ResNet3代码部署3.1安装[CUDAToolkit12.8](https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubunt
- 保姆级教学——本地免费部署DeepSeek-R1模型并通过Python调用
shuaige_shiwoa
python+AIpython开发语言AI编程ai
以下是如何在本地免费部署DeepSeek-R1模型并通过Python调用的详细指南:一、环境准备(Windows/Linux/Mac通用)1.硬件要求最低配置:16GB内存+20GB可用磁盘空间推荐配置:NVIDIAGPU(显存≥8GB)+CUDA11.8(CPU模式支持但速度较慢)2.软件依赖#创建虚拟环境(可选但推荐)condacreate-ndeepseekpython=3.10condaa
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- 【Linux】-Pve下的Nginx安装
前鼻音太阳熊
Linuxlinuxnginx运维
linuxpve系统安装nginxpve系统和普通系统的区别核心定位与功能差异PVE:是专为虚拟化场景设计的Linux发行版,内置KVM虚拟机和LXC容器管理功能,提供统一的Web界面及集群管理能力,支持高可用性、虚拟机迁移等企业级特性23。普通Linux:作为通用操作系统,需通过手动安装KVM、Docker等工具实现虚拟化/容器化功能,缺乏原生的集中式虚拟化平台管理界面67。系
- 本地部署时,如何通过硬件加速(如 CUDA、TensorRT)提升 DeepSeek 的推理性能?不同显卡型号的兼容性如何测试?
百态老人
人工智能科技算法vscode
本地部署DeepSeek模型的硬件加速优化与显卡兼容性测试指南一、硬件加速技术实现路径CUDA基础环境搭建版本匹配原则:根据显卡架构选择CUDA版本(如NVIDIARTX50系列需CUDA12+,V100需CUDA11.x),并通过nvcc--version验证安装。GPU加速验证:运行以下代码检查硬件加速状态:importtensorflowastfprint("可用GPU数量:",len(tf
- 人工智能 - TensorRT与DeepDP终极指南:释放GPU潜能的深度学习推理优化之道
天机️灵韵
具身智能VLA人工智能人工智能算法深度学习pytorch
TensorRTTensorRT(TensorRuntime)是英伟达(NVIDIA)推出的高性能深度学习推理(Inference)优化器和运行时库,专为在NVIDIAGPU上高效部署深度学习模型而设计。它通过模型压缩、计算图优化、硬件级加速等技术,显著提升推理速度并降低资源消耗,广泛应用于自动驾驶、工业检测、实时视频分析等对延迟敏感的领域。一、TensorRT的核心功能模型优化与加速层融合(La
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin