SSIM

structural similarity (SSIM) index measurement system
一种衡量两幅图像相似度的新指标,其值越大越好,最大为1,
经常用到图像处理中,特别在图像去噪处理中在图像相似度评价上全面超越SNR(signal to noise ratio)和PSNR(peak signal to noise ratio)。具体原理见文献[1]。[1]
结构相似性理论认为,自然图像信号是高度结构化的,即像素间有很强的相关性,特别是空域中最接近的像素,这种相关性蕴含着视觉场景中物体结构的重要信息;HVS的主要功能是从视野中提取结构信息,可以用对结构信息的度量作为图像感知质量的近似。结构相似性理论是一种不同于以往模拟HVS低阶的组成结构的全新思想,与基于HVS特性的方法相比,最大的区别是自顶向下与自底向上的区别。这一新思想的关键是从对感知误差度量到对感知结构失真度量的转变。它没有试图通过累加与心理物理学简单认知模式有关的误差来估计图像质量,而是直接估计两个复杂结构信号的结构改变,从而在某种程度上绕开了自然图像内容复杂性及多通道去相关的问题。
作为结构相似性理论的实现,结构相似度指数从图像组成的角度将结构信息定义为独立于亮度、对比度的,反映场景中物体结构的属性,并将失真建模为亮度、对比度和结构三个不同因素的组合。用均值作为亮度的估计,标准差作为对比度的估计,协方差作为结构相似程度的度量。


你可能感兴趣的:(SSIM)