读书笔记:Representing and manipulation information

1. 信息的存储

a)


C declaration
32 bit 64 bit
char 1 1
short int 2 2
int 4 4
long int 4 8
long long int 8 8
char* 4 8
float 4 4
double 8 8

b)

0x01234567


               地址:                 0x100    0x101    0x102    0x103     

    big endian :     ...         01           23           45          67   ...

   little endian:       ...           67        45               23          01

c) 


// Code to print the byte representation of program objects.

#include <stdio.h>

typedef unsigned char *byte_pointer; 4
void show_bytes(byte_pointer start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf(" %.2x", start[i]);
    printf("\n");
}

void show_int(int x) {
    show_bytes((byte_pointer) &x, sizeof(int));
}

void show_float(float x) {
    show_bytes((byte_pointer) &x, sizeof(float));
}

void show_pointer(void *x) {
    show_bytes((byte_pointer) &x, sizeof(void *));
}


2. 整数的表达

正负数的表达,负数是正数的补集(two's complement),

B2T4([0001]) = −0*2^3+0*2^2+0*2^1+1*2^0 =0+0+0+1=1

B2T4([0101]) = −0*2^3+1*2^2+0*2^1+1*2^0 =0+4+0+1=5

B2T4([1011]) = −1*2^3+0*2^2+1*2^1+1*2^0 = −8+0+2+1 = −5

B2T4([1111]) = −1*2^3+1*2^2+1*2^1+1*2^0 = −8+4+2+1 = −1 

usigned int, 最高位是1的时候变成负数,最高位是0的时候是负数。



3. 整数的运算


4. 浮点数

类型 存储位数       偏移值  
  数符(s) 阶码(E) 尾数(M) 总位数 十六进制 十进制
短实数(Single,Float) 1位 8位 23位 32位 0x7FH +127
长实数(Double) 1位 11 位 52位 64位 0x3FFH +1023
临时实数(延伸双精确度,不常用) 1位 15位 64位 80位 0x3FFFH +16383

F=1.M(二进制)  

在单精度时:  V=(-1)^s*2^(E-127)*F  (127: 255的一半,一半用来表达小于0,一半用来大于0)

在双精度时:  V=(-1)^s*2^(E-1023)*F


由于float的有无数个但是能表达的只有有限个, float在坐标轴上分布极其不均匀,越小越精确,越大越不精确,这也是浮点计算遇到大数更容易产生误差的原因,IEEE 定义了两大类五小类的近似标准。

Roundings to nearest

  • Round to nearest, ties to even – rounds to the nearest value; if the number falls midway it is rounded to the nearest value with an even (zero) least significant bit, which occurs 50% of the time; this is the default for binary floating-point and the recommended default for decimal.
  • Round to nearest, ties away from zero – rounds to the nearest value; if the number falls midway it is rounded to the nearest value above (for positive numbers) or below (for negative numbers); this is intended as an option for decimal floating point.

Directed roundings

  • Round toward 0 – directed rounding towards zero (also known astruncation).
  • Round toward +∞ – directed rounding towards positive infinity (also known asrounding up orceiling).
  • Round toward −∞ – directed rounding towards negative infinity (also known asrounding down orfloor).
对于float的运算gcc会帮我们用double来round

Setting the hardware rounding mode to double precision prevents thisfrom happening:

$ gcc -Wall -DDOUBLE



1. Normalized
s0 &255f

2. Denormalized

s00000000 f

3a. Infinity

s1111111100000000000000000000000

3b. NaN

s11111111≠0 


 For argument f , it returns ±0 if f is denormalized (preserving the sign of f ) and returns f otherwise.
/* If f is denorm, return 0.  Otherwise, return f */
float_bits float_denorm_zero(float_bits f) {
    /* Decompose bit representation into parts */
    unsigned sign = f>>31;
    unsigned exp =  f>>23 & 0xFF;
    unsigned frac = f     & 0x7FFFFF;
    if (exp == 0) {
        /* Denormalized.  Set fraction to 0 */
frac = 0; }
    /* Reassemble bits */
    return (sign << 31) | (exp << 23) | frac;
}



具体的float如何运算,exception处理,和intel采用的是什么round方式,留以后研究。

你可能感兴趣的:(float,endian)