- C# OpenCV机器视觉:卡尔曼滤波
pchmi
C#OpenCV机器视觉c#opencv人工智能机器视觉卡尔曼滤波
在一个阳光有些慵懒的午后,阿强像往常一样窝在他那被各种电子元件和乱糟糟电线堆满的实验室里,百无聊赖地翻看着一本本厚重的技术书籍。突然,一阵急促的敲门声打破了平静,阿强趿拉着拖鞋,嘟囔着跑去开门,只见好友二胖火急火燎地冲了进来,手里还挥舞着一个小型无人机模型。“阿强啊,我这新买的无人机出大问题了!”二胖气喘吁吁地说道,额头上豆大的汗珠滚落,“我本来想在公园里拍点酷炫的飞行视频,结果它在空中晃得厉害,
- 基于卡尔曼滤波的系统参数辨识matlab仿真
软件算法开发
MATLAB程序开发#参数辨识matlab网络
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理4.1、卡尔曼滤波的基本原理4.2、基于卡尔曼滤波的系统参数辨识5.完整程序1.程序功能描述通过kalman滤波的方法,对系统的参数进行辨识,整个程序仿真输出参数辨识的收敛过程,参数辨识误差,参数辨识之后系统的输出和真实的系统输出误差,最后设置不同的信噪比,对比不同干扰下的系统参数辨识误差。2.测试软件版本以及运行结果展
- 目标跟踪概念、多目标跟踪算法SORT和deep SORT原理
yhwang-hub
深度学习
目录目标跟踪、单目标跟踪、多目标跟踪的概念欧氏距离、马氏距离、余弦距离欧氏距离马氏距离余弦距离SORT算法原理SORT算法中的匈牙利匹配算法指派问题中的匈牙利算法预测模型(卡尔曼滤波器)数据关联(匈牙利匹配)目标丢失问题的处理SORT算法过程deepSORT算法原理状态估计轨迹处理分配问题的评价指标级联匹配深度表观描述子算法总结目标跟踪、单目标跟踪、多目标跟踪的概念目标跟踪分为静态背景下的目标跟踪
- 传感器融合(UWB+IMU+超声波),使用卡尔曼滤波器和3种不同的多点定位算法(最小二乘、递归最小二乘和梯度下降)研究(Matlab代码实现)
科研_研学社
算法matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、引言二、传感器介绍(一)UWB(超宽带)(二)IMU(惯性测量单元)(三)超声波传感器三、定位算法(一)卡尔曼滤波器(二)多点定位算法1.最小二乘法2.递归最小二乘法3.梯度下降法四、系统架构五、实验设计六、结果与讨论七、结论2运行结果3参考文献
- 【事件触发扩散卡尔曼滤波器】基于UWB实测数据的基于事件触发的扩散卡尔曼滤波器的定位【DEKF、EKF】(Matlab代码实现)
wlz249
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述2运行结果3参考文献4Matlab代码、数据、文章下载⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌
- ZYNQ&FPGA 时钟IP核(MMCM PLL)实验
Nadukab
fpgaverilog嵌入式
时钟资源简介:7系列的FPGA使用了专用的全局(Global)和区域(Regional)时钟资源来管理和设计不同的时钟需求。ClockManagementTiles(CMT)提供了时钟合成(Clockfrequencysynthesis),倾斜矫正(deskew),过滤抖动(jitterfiltering)功能。一个CMT包括一个MMCM和一个PLL。7系列FPGA高层次时钟结构视图:ClockR
- 维度可变的UKF(无迹卡尔曼滤波),附有完整源代码
MATLAB卡尔曼
MATLAB创新性滤波方法matlab开发语言
本文分享的MATLAB代码实现了一个N维状态量的无迹卡尔曼滤波(UKF)算法,用于对动态系统的状态估计。代码的一个显著特点是滤波维度可以自由更改,便于适应不同的应用需求。文章目录代码简短介绍运行结果源代码代码简短介绍主要内容和流程如下:初始化:清空工作区和命令窗口,固定随机数种子以确保结果可重现。定义时间序列和状态维度(dim),可以灵活设置至任意值,以适应特定应用。设置过程和观测噪声的协方差矩阵
- 用python编写的UKF(无迹卡尔曼滤波)代码,状态量和观测量都是三维、非线性的,注释使用中文
MATLAB卡尔曼
卡尔曼与pythonpython开发语言
用python编写的UKF(无迹卡尔曼滤波)代码,状态量和观测量都是三维、非线性的,注释使用中文文章目录代码讲解UKF类的构造预测步骤更新步骤辅助函数示例用法总结importnumpyasnpclassUKF:def__init__(self,dim_x,dim_z,alpha=1e-3,beta=2,kappa=0):self.dim_x=dim_x#状态维度self.dim_z=dim_z#观
- PyTorch 神经协同过滤 (NCF) 推荐系统教程
陌北v1
pytorchpythonNCF神经协同过滤
目录教程概述1.神经协同过滤模型概述NCF模型的主要组成部分:2.数据加载与预处理3.定义神经协同过滤模型4.训练模型5.模型评估6.推荐物品7.完整示例8.总结在本教程中,我们将使用PyTorch实现一个神经协同过滤(NeuralCollaborativeFiltering,简称NCF)推荐系统。神经协同过滤是一种基于深度学习的推荐系统模型,通过学习用户和物品的嵌入表示来预测用户对物品的评分,进
- 2019-07-09 AutoCompleteTextView 问题
皮皮铭
实现自定义Adapter要实现Filterable接口,不然会报错重写getFilter()方法performFiltering()方法实现过滤数据的操作publishResults()用来接收performFiltering()的返回值,发布。
- 深入理解Kubernetes:kube-scheduler源码解析
mujingluo
kubernetes容器云原生
Kubernetes的调度器(kube-scheduler)是整个系统中至关重要的组件,它负责将待调度的Pods分配到合适的节点上。本文将深入分析kube-scheduler的源码,揭示其内部工作机制。kube-scheduler的核心功能kube-scheduler的核心功能包括:监听Pod变化:通过KubernetesAPI监听所有未调度的Pods。过滤(Filtering):根据一系列规则(
- 快!!!Spring Boot Admin 2.3.1 发布,轻量的图形化监控工具
小白不想上班
SpringBootAdmin2.3.1发布,这是一个错误修正版本。现在可以从maven仓库下载,支持2.3.0平滑升级功能更新在线日志查看支持自动换行增加配置支持指定视图隐藏实例增加安全配置,支持springcloudkubernetes服务发现当服务部分实例不可用时,允许动态服务设置日志级别错误修复FilteringNotifier触发时会被执行两次如请求没有响应,Http跟踪不起作用存在多个
- spring cloud gateway 源码一总体执行流程
white_while
微服务springcloudgatewaygateway微服务
文章目录gateway源码gateway执行流程RouteLocatorRoutePredicateHandlerMappingFilteringWebHandlergateway源码gateway执行流程RouteLocator初始化配置DispatcherHandler请求分发RoutePredicateHandlerMapping路由匹配断言FilteringWebHandler过滤器链支持
- 07-02 Filtering(过滤 )&& 07-03 Sorting(排序 )
汤姆•猫
XPO.netlinq数据库XPO
07-02Filtering(过滤)XPOallowsyouto:XPO允许您:filterdataitemsinadatastorepriortoretrievingdata,在检索数据之前过滤数据存储中的数据项,filterthealreadyretrievedpersistentobjectsontheclientside.在客户端过滤已检索到的持久对象。FilterDataontheSer
- 2-80 基于matlab-GUI,实现kalman滤波对目标物的位置进行检测跟踪
顶呱呱程序
matlab工程应用matlab汽车算法形态学处理冒泡法kalman视频跟踪滤波
基于matlab-GUI,实现kalman滤波对目标物的位置进行检测跟踪。检测汽车中心和最大半径,与背景差分选择较大差异的区域进行形态学处理,用冒泡法对目标面积从大到小排序。程序已调通,可直接运行。2-80kalman视频跟踪滤波-小红书(xiaohongshu.com)
- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 常见的 滤波法
匠在江湖
算法C/C++单片机算法c语言
序号大类名称方法优点缺点适用范围函数名1克服大脉冲干扰的数字滤波法限幅滤波法Limitingfilteringmethod1、根据经验判断,确定两次采样允许的最大偏差值(设为A)2、每次检测到新值时判断:3、如果本次值与上次值之差A,则本次值无效,放弃本次值,用上次值代替本次值1、能有效克服因偶然因素引起的脉冲干扰1、无法抑制那种周期性的干扰2、平滑度差变化比较缓慢的被测量值LimitFilter
- 基于用户的协同过滤以及ALS的混合召回算法
山水阳泉曲
算法机器学习人工智能矩阵python推荐算法线性代数
文章目录需求基于用户的协同过滤基本步骤相似度计算代码示例(使用余弦相似度)基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替最小二乘(AlternatingLeastSquares,ALS)结合起来,设计一个混合推荐系统。这种系统可以利用
- Kalman滤波参数、调整原则
Terry Cao 漕河泾
VSLAM人工智能算法
1.Q、P、R关系P的迭代为P=QTPQ;R为观测的协方差;状态延时高,说明收敛速度慢。估计参数P越大,收敛的越快。测量误差R越小,收敛的越快。调整这两个参数即可,从状态更新上说,测量误差越小,估计参数误差越大,说明我们越相信测量值,自然收敛的快。缺点就是会让系统变化过快,如果测量值更加不准,则精度会下降,系统不够稳定。2.K与Q、R关系k~Q/(R+Q)P0/(Q+R),收敛的快慢程度。总结下自
- 如何利用BibTex生成论文参考文献列表
写完就会了
解决问题Latex参考文献BibTex
如何利用BibTex生成论文参考文献列表Step1:先在GoogleScholar上找到BibTeX条目信息导出来;如下:@article{chowdhary2010aerodynamic,title={AerodynamicparameterestimationfromflightdataapplyingextendedandunscentedKalmanfilter},author={Chow
- EKF+PF的MATLAB例程
Evand J
matlab开发语言
EKF+PF扩展卡尔曼滤波与粒子滤波的MATLAB程序,有中文注释程序源码%EKF+PF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,咨询需付费)%date:2024-1-10%Ver2clear;clc;closeall;rng(0);%%参数设置N=100;%粒子总数
- 基于二阶卡尔曼滤波的陀螺仪及加速度计信号融合的姿态角度测量
星e雨
嵌入式
★基于陀螺仪及加速度计信号融合的姿态角度测量1、系统组成本文所采用的姿态角度测控系统主要由加速度计、陀螺仪、微控制器、滤波电路、电机调速器、无刷电机等部分组成.姿态检测系统的硬件平台如图1,由微处理器对陀螺仪、滤波电路和加速度计构成的传感器组进行高速A/D采样后,通过卡尔曼滤波器对传感器数据进行补偿和信息融合,得到准确的姿态角度信号,此角度信号再通过PID控制器运算,输出给电子调速器转换成PWM信
- 生信工具 | 测序数据质控与过滤 - fqtrim
程序员
fqtrimtrimming&filteringofnext-genreadsfqtrim是一个多功能的独立实用程序,可用于去除高通量测序仪产出的测序数据接头,poly-A尾,末端未知碱基(Ns)和低质量3'区域。该程序允许接头序列和poly-A序列的不精确匹配(从而考虑到由测序错误导致的错配和插入/缺失)。此工具还可以对reads应用低复杂性(“dust”)过滤器,或计数并折叠重复reads,这
- 【防火墙讲解】
程序员不想敲代码啊
网络php安全
防火墙讲解1.介绍2.防火墙实现的基本功能3.防火墙的类型4.防火墙的配置和管理5.防火墙与安全1.介绍防火墙是计算机网络安全系统的核心组件,主要目的是在私有网络和公共网络(例如互联网)之间建立一道防线,以保护内部网络免受未经授权访问和攻击,防火墙可以是一种硬件设备,也可以是软件程序,还可以是两者的组合。2.防火墙实现的基本功能数据包过滤(PacketFiltering):对经过防火墙的数据包进行
- WebRTC 中带宽估计与拥塞控制算法
逆风了我
WebRTCwebrtc
WebRTC中的带宽估计与拥塞控制算法有很多,以下是其中几种:-GCC(GoogleCongestionControl):基于丢包的带宽估计,其基本思想是根据丢包的多少来判断网络的拥塞程度。丢包越多则认为网络越拥塞,发送速率就需要降低;如果没有丢包,则说明网络状况较好,可以提高发送码率以探测是否有更多的带宽可用。-Goog-REMB:基于接收端的延迟算法,利用延迟值,通过卡尔曼滤波器估计出下一时刻
- LLM(2)之指令提示词(Prompt)基础教学
Once_day
CS小白之路#LLM实践成长prompt自然语言处理人工智能
LLM(2)之指令提示词Author:OnceDayDate:2024年2月15日全系列专栏请查看:LLM实践成长_Once_day的博客-CSDN博客参考文章:中文完整版全9集ChatGPT提示工程师|AI大神吴恩达教你写提示词ChatGPTShortcut-简单易用的ChatGPT快捷指令表,让生产力倍增!标签筛选、关键词搜索和一键复制Prompts|Tagfiltering,keywords
- 扩展卡尔曼滤波与粒子滤波例程
Evand J
算法人工智能
三维滤波,非线性系统状态与非线性观测,使用EKF和PF进行滤波,输出滤波值曲线与误差对比,MATLAB程序如下:%EKF+PF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,咨询需付费)%date:2024-1-10%Ver2clear;clc;closeall;%%参数设置N=100;%粒子总数t=1:1:
- 【目标跟踪】提供一种简单跟踪测距方法(c++)
读书猿
目标跟踪c++人工智能
文章目录一、前言二、c++代码2.1、Tracking2.2、KalmanTracking2.3、Hungarian2.4、TrackingInfo三、调用示例四、结果一、前言在许多目标检测应用场景中,完完全全依赖目标检测对下游是很难做出有效判断,如漏检。检测后都会加入跟踪进行一些判断或者说补偿。而在智能驾驶中,还需要目标位置信息,所以还需要测距。往期博客介绍了许多处理复杂问题的,而大部分时候我们
- 卡尔曼滤波详解(1)
见牛羊
人工智能人工智能数学建模
目录1.核心思想2.五个公式的解读2.1预测部分2.2更新部分3.公式的实际应用4.调参方法1.核心思想首先,卡尔曼滤波器可以用来估计系统的状态,这个状态是时间序列上的,利用上一时刻的状态可以预测当前时刻的状态,利用当前时刻的观测可以更新和修正当前时刻的预测。这么说可能有点绕,看下图。绿色的x表示系统的状态,y表示对系统状态的观测,蓝色的x表示修正后的状态。卡尔曼滤波的核心思想,就是用利用蓝色进行
- EKF与UKF对比,三维状态量滤波
Evand J
人工智能matlab
扩展卡尔曼滤波EKF与无迹卡尔曼滤波UKF的MATLAB程序,程序源码:%EKF+UKF效果对比%author:Evand%作者联系方式:
[email protected](除前期达成一致外,付费咨询)%date:2023-11-07%Ver1clear;clc;closeall;%%滤波模型初始化t=1:1:1000;Q=1*
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文