- 再有人问你DDD,把这篇文章丢给他
聪明马的博客
Javajava开发语言
DDD(Domain-DrivenDesign,中文名领域模型设计)是一种软件开发方法论,它强调将业务领域中的知识融入到软件设计中。DDD强调将软件开发过程分为两个主要阶段:领域分析和领域建模。领域分析是指深入了解业务领域中的问题和需求,领域建模是将分析出的领域知识转化为软件模型。在本文中,我不再过多说明DDD的来龙去脉,我将用多个例子来详细说明使用DDD和不使用DDD的区别、优势和劣势。需求:假
- 知识图谱构建概念、工具、实例调研
熟悉的黑曼巴
知识图谱人工智能
一、知识图谱的概念知识图谱(Knowledgegraph)知识图谱是一种用图模型来描述知识和建模世界万物之间的关联关系的技术方法。知识图谱由节点和边组成。节点可以是实体,如一个人、一本书等,或是抽象的概念,如人工智能、知识图谱等。边可以是实体的属性,如姓名、书名或是实体之间的关系,如朋友、配偶。知识图谱的早期理念来自SemanticWeb(语义网络),其最初理想是把基于文本链接的万维网落转化为基于
- 全面解析 Enterprise Architect(EA)活动图的工具集:从元素到关系的详尽指南
泡沫o0
C/C++编程世界:探索C/C++的奥妙c++20开发语言c++嵌入式qtumlarm
目录标题第一章:引言——理解活动图的重要性1.1什么是活动图?1.1.1活动图的组成元素1.1.2活动图的应用场景1.2为什么选择EA作为建模工具?1.2.1EA的强大功能1.2.2EA与其他建模工具的对比第二章:活动图中的核心元素2.1活动类元素2.1.1Activity(活动)示例:2.1.2Action(动作)示例:2.1.3Partition(泳道)示例:2.1.4Send(发送)与Rec
- 灰色系统理论及其关联分析方法
青橘MATLAB学习
算法matlab数学建模
前言在现实世界中,许多系统的内部结构、参数及特征并未完全被人们认知。例如,粮食产量受肥料、气象、政策等多因素影响,但各因素与产量间的定量关系难以明确。这类部分信息已知、部分信息未知的系统被称为灰色系统。灰色系统理论从数据本征特性出发,通过有限信息挖掘系统规律,为信息匮乏或紊乱的问题提供建模与分析方法。本章将介绍灰色系统的基本概念及其核心方法——关联分析,揭示如何通过动态态势量化解决实际问题。§1灰
- 使用Python获取在线股票交易网站的实时交易数据
嵌入式开发项目
2025年爬虫精通专栏python开发语言爬虫
目录步骤1:选择股票交易网站步骤2:使用requests库发送HTTP请求步骤3:解析HTML内容步骤4:提取实时交易数据步骤5:存储和使用数据在金融市场中,实时交易数据对于投资者来说具有重要的价值。实时的股票价格、交易量和其他市场指标可以帮助投资者做出更准确的决策,同时也是进行金融分析和建模的重要数据源。在本篇博客中,我们将学习如何使用Python获取在线股票交易网站的实时交易数据。在开始之前,
- Vulkan 究竟是什么
美颜特效.音视频
Vulkan基础
Vulkan图形系统究竟是什么?Vulkan是一个图形和计算硬件的API(ApplicationProgrammingInterface)。这个API由很多命令组成,它们允许程序员指定着色器程序,计算内核,对象和操作产生高质量的图像,特别是三维对象的彩色图像。程序员的视角看Vulkan:对程序员来讲,Vulkan是一些命令的集合,允许内核或者着色器,和shader执行的外部Vulkanaspect
- Java 设计模式之解释器模式
xiangxiongfly915
#Java设计模式java设计模式解释器模式
文章目录Java设计模式之解释器模式概述UML代码实现Java设计模式之解释器模式概述解释器模式(interpreter):给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。如果一种特定类型的问题发生的频率足够高,那么可能就值得将该问题的各个实例表述为一个简单语言中的句子。这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题。UMLAbstr
- Java 设计模式之桥接模式
xiangxiongfly915
#Java设计模式java设计模式桥接模式
文章目录Java设计模式之桥接模式概述UML代码实现Java设计模式之桥接模式概述桥接模式(Bridge):将抽象部分与它的实现部分分离,使它们都可以独立地变化。通过桥接模式,可以避免类爆炸问题,并提高系统的可扩展性。UML核心思想:抽象部分:定义高层的控制逻辑。实现部分:定义底层的具体实现。桥接:通过组合的方式连接抽象部分和实现部分。角色:Implementor:实现部分的接口,定义行为。Con
- 美颜相机技术架构设计图
陈皮话梅糖@
FFmpeg音视频高阶技术讲解OpenGLESOpenGLES连载数码相机架构
美颜相机技术架构设计图(以下为文本可视化架构,实际开发时需绘制UML/流程图补充细节)整体架构层级+--------------------------+|应用层|+--------------------------+|-拍摄/录制交互按钮||-美颜参数调节UI||-视频剪辑操作界面|+------------+-------------+|+-------------v------------
- SWAT-MODFLOW地表水-地下水耦合建模
岁月如歌,青春不败
水文水资源SWAT模型MODFLOW模型水文模型水文水资源土地利用cmip6气候变化
一:耦合模型原理与层次结构1.1流域水循环与SWAT模型1.2地下水模拟与MODFLOW模型1.3SWAT-MODFLOW地表-地下耦合模型1.4QSWATMOD插件与功能1.5模型实现所需软件平台二:QGIS软件2.1QGIS平台2.2QGIS安装2.3QGIS界面认识2.4QGIS常见数据格式2.5QGIS建立工程三:基于QSWATMOD的SWAT-MODFLOW模拟3.1QSWATMOD下载
- Linux下安装MySQL 5.7或者8.0
周伟强
linuxmysqlcentos
Linux下安装MySQL5.7本次将在Linux下通过yum安装MySQL,安装的版本为MySQL5.7,官网中是最新版本8.0,在网上查了下,发现最新版本的yum源也包含了旧版本,而我们,只需要在安装时启用5.7的安装即可。本人环境:CentOS7.664位1.检查CentOS是否有系统自带的mysqlyumlistinstalled|grepmysql如果存在系统自带的mysql及依赖,则通
- 从awesome xxx类型的GitHub项目的README.md文件中检索所有GitHub代码库链接,并将它们克隆到本地
之群害马
github
脚本优化亮点:智能编码处理-新增URL解码功能,完美处理含中文等特殊字符的仓库名深度镜像支持-更新国内高校镜像源,提升克隆速度(新增清华、中科大镜像)智能重试机制-增加自动重试功能,网络波动时自动重试3次进度可视化-添加彩色进度条显示,实时掌握克隆进度深度错误追踪-增强错误日志记录,包含时间戳和错误类型#!/bin/bash#彩色输出设置RED='\033[0;31m'GREEN='\033[0;
- 【第11章:生成式AI与创意应用—11.2 音频与音乐生成的探索与实践】
再见孙悟空_
#【深度学习・探索智能核心奥秘】人工智能音视频自然语言处理NLP深度学习生成式AIDeepSeek
凌晨三点的录音棚里,制作人小林对着空荡荡的混音台抓狂——广告方临时要求将电子舞曲改编成巴洛克风格,还要保留"赛博朋克"元素。当他在AI音乐平台输入"维瓦尔弟遇见霓虹灯"的瞬间,一段融合羽管键琴与合成器的奇妙旋律喷涌而出,这场人与机器的音乐狂想曲正式拉开帷幕。一、声波炼金术:从物理建模到神经作曲1.1传统音频生成的三大门派在AI登场之前,音乐科技已经历三次革命:物理建模派(1980s):用微分方程模
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- 基于GPT一键完成数据分析全流程的AI Agent: Streamline Analyst
Wilson_ZheLIN
gpt4aiagentllms数据分析
大型语言模型(LLM)的兴起不仅为获取知识和解决问题开辟了新的可能性,而且催生了一些新型智能系统,例如旨在辅助用户完成特定任务的AICopilot以及旨在自动化和自主执行复杂任务的AIAgent,使得编程、创作等任务变得高效而条理。在数据科学和可视化方面,非常多家AICopilot通过提供智能提示、建议或辅助决策等手段有效减小了用户的工作量。但是很少有app针对不同种类数据的预处理、建模、可视化等
- 基于 Spring Cloud + Sentinel 的全面流量治理方案
power-辰南
java技术架构师成长专栏springcloudsentinelspring流量治理
一、精准评估系统最大负载1.流量建模历史日志分析流量特征提取业务场景拆解流量模型构建容量预测模型实施方法:使用ELK分析6个月Nginx日志,提取分时/分业务QPS曲线构建典型场景模型:日常流量(正态分布)、促销流量(脉冲模型)、恶意攻击(毛刺识别)容量公式:单实例容量=(CPU核心数*1000ms)/平均RT(ms)2.数据模拟与环境搭建#使用tcpcopy复制生产流量./tcpcopy-x80
- Spring Cloud微服务生产级容量评估实战
power-辰南
java专栏springcloud微服务spring容量评估
一、容量评估体系架构业务需求分析流量建模环境仿真分级压测瓶颈分析容量计算配置推荐验证优化二、流量建模与数据模拟2.1流量建模四步法步骤1:生产流量分析#分析Nginx日志获取真实流量特征awk'{print$4,$7,$9}'access.log|awk-F'[:]''{print$1,$5,$7}'|sort|uniq-c|sort-nr>api_distribution.txt#输出示例:14
- 机器学些|实战?
dami_king
随笔机器学习
机器学习实战:从零到%1…今天聊聊机器学习(MachineLearning,ML),这个听起来高大上的技术其实并没有那么神秘。跟着我的节奏,咱们一起来探索一下如何从零开始!准备工作:安装和导入必要的库在开始我们的房价预测项目之前,我们需要准备好开发环境并导入所有必要的库。这些库将帮助我们处理数据、构建模型、评估性能以及可视化结果。安装Python和JupyterNotebook首先,确保你已经安装
- 奥比中光3D机器视觉相机能连接halcon吗?
视觉人机器视觉
机器视觉3D3d数码相机视觉检测c#
奥比中光的设备与Halcon的兼容性可以通过以下方式实现:数据接口的通用性奥比中光的相机(如AstroPro、大白等)支持通过UVC协议获取彩色图像,深度数据则通过OpenNI或ROS2接口传输105。若Halcon支持这些协议或标准接口(如ROS消息、OpenCV图像流),则可通过直接调用或二次开发实现连接。例如,通过Python或C#脚本将图像数据从相机传输至Halcon的处理流程中。SDK与
- 数据仓库、数据湖和数据湖仓
阿湯哥
数据仓库spark大数据
数据仓库、数据湖和数据湖仓是三种常见的数据存储和管理技术,各自有不同的特点和适用场景。以下是它们的详细比较:1.数据仓库(DataWarehouse)定义:用于存储结构化数据,经过清洗、转换和建模,支持复杂的查询和分析。特点:结构化数据:主要处理关系型数据。预定义模式:数据在加载前需要定义模式(Schema-on-Write)。高性能查询:优化用于复杂查询和报表生成。数据治理:提供强大的数据治理和
- 数学建模基础训练-1:概念解析
MPCTHU
数学建模数学建模
文章目录数学建模基础训练-1:概念解析问题一:如何找到“概念”?问题二:如何全面理解概念的基础含义?问题三:如何深刻理解概念并作出创新点发掘?实际举例问题一:研究并给出寒假开学某大学返校交通问题的合理解决方案首先,找到“概念”:其次,认识基础概念:第三,对概念的二次挖掘学生到校与离校的交通流量模型交通拥堵对学校教学与运营的影响模型交通安全事故风险评估模型学校交通设施规划与优化模型问题二:研究并给出
- 提示-bash: telnet: command not found的解决方法
廖俊才
LinuxCentOS
Linuxcentos运行telnet命令,出现下面的错误提示:[root@localhost~]#telnet127.0.0.1-bash:telnet:commandnotfound解决方法:安装telnet服务centos、ubuntu安装telnet命令的方法.yumlisttelnet*列出telnet相关的安装包yuminstalltelnet-server安装telnet服务yumi
- 利用模型输出,解决Yalmip建模+Cplex求解的约束出错问题
eeeecj_23
优化求解matlabmatlab
在进行优化求解过程中,难免会遇到这种情况:Row‘c373’infeasible,allentriesatimpliedbounds.那么应该怎么办呢?当用Yalmip建模+Cplex求解过程中,由于Yalmip的建模方式与Cplex有一定的不同,如图:saveampl(constraint,object,'mymodel');得到结果为:从图中可知,由于没有准确的行编号,利用其对Cplex求解过
- 架构设计之软件建模与软件设计文档
夜夜流光相皎洁_小宁
架构设计#架构案例分析架构设计软件建模UML建模需求分析概要设计软件建模流程建模的定义与建模解决的问题软件设计文档
目录一、概述二、软件建模2.1软件建模的定义2.2软件建模的作用2.3软件建模解决的问题2.3.1明确要解决的领域问题2.3.2最终开发出来的系统包含什么2.3.3软件模型设计流程三、软件设计方法3.1概述3.2类图3.3时序图3.4组件图3.5部署图3.6用例图3.7状态图3.8活动图四、软件设计文档4.1概述4.2需求分析4.3概要设计4.4详细设计4.5总结五、总结一、概述架构师的一系列软件
- Audio-Visual Speech Enhancement(视听语音增强)领域近三年研究进展与国内团队及手机厂商动态分析
AndrewHZ
深度学习新浪潮智能手机算法计算机视觉硬件架构硬件工程智能硬件
一、视听语音增强领域近三年研究进展多模态融合与模型轻量化多模态特征融合:中国科学技术大学团队提出通过引入超声舌头图像和唇部视频的联合建模,结合知识蒸馏技术,在训练阶段利用教师模型传递舌部运动知识,从而在推断时仅依赖唇部视频即可提升语音增强效果。此外,中科院声学所提出基于泰勒展开的模型架构,将幅度-相位解耦与空间-谱域解耦重新建模,提升算法可解释性并优化性能。轻量化模型设计:中国科大与腾讯天籁实验室
- 递归消除特征法RFE筛选特征-包装法-特征选择-特征降维
糯米君_
预处理机器学习python人工智能
RFE(Recursivefeatureelimination):递归消除特征法使用一个基模型(这里使用逻辑回归)来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。RFE的具体步骤如下:1、初始的特征集为所有可用的特征。2、使用当前特征集进行建模,然后计算每个特征的重要性。3、删除最不重要的一个(或多个)特征,更新特征集。4、跳转到步骤2,直到完成所有特征的重要性
- ARIMA差分自回归移动平均模型--时间序列预测
别团等shy哥发育
数据挖掘与机器学习回归python数据挖掘时间序列分析机器学习
ARIMA差分自回归移动平均模型1、ARIMA模型理论基础2、ARIMA建模步骤3、ARIMA建模实战3.1导入模块3.2加载数据3.3平稳性检验3.4单位根检验3.4白噪声检验3.5模型定阶3.6参数估计3.7模型的显著性检验3.8模型预测3.8模型拟合效果展示参考文献论文:文章:1、ARIMA模型理论基础 ARIMA是差分自回归移动平均模型的引文缩写,其中AR表示的是自回归模型,MA表示的是
- 【论文精读】MotionLM
EEPI
自动驾驶深度学习论文阅读
【论文精读】MotionLM1背景2存在的问题3具体方案轨迹转运动序列模型轨迹去重和聚类loss1背景团队:Waymo时间:2023.9代码:简介:采用自回归的方式做轨迹生成,能够更好地建模交互,且避免模态坍缩,在数据集达到了SOTA。2存在的问题轨迹回归方面:原本xy预测认为空间过大,有的xy很大(t大速度快的时候),有的xy很小(t小速度慢的时候)。3具体方案Encoder采用了之前的论文Wa
- OpenCV:人脸检测与Haar级联分类器(十三)
WHCIS
opencvopencv数学建模人工智能计算机视觉音视频算法
一、Haar级联检测深度解析1.1Haar特征数学建模Haar特征的本质是通过矩形区域对比捕捉局部特征,其数学形式可扩展为四元组表示:特征定义:Haar(f)=(t,x,y,w,h)×s\text{Haar}(f)=(t,x,y,w,h)\timessHaar(f)=(t,x,y,w,h)×s其中:ttt表示特征类型(共14种基础变体)(x,y)(x,y)(x,y)为特征锚点坐标(w,h)(w,h
- Linux安装nginx并配置systemctl命令
伊莲已存在
服务器nginxlnmpnginxlinux
1、安装yumListitem安装流程不在赘述可以自行查看这里2、使用yum安装nginxyum-yinstallnginx3、安装完成后,yum安装会自动生成systemctl命令,执行如下systemctlstartnginxsystemctlstatusnginx{
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,