二分图匹配相关的几个概念

二分图匹配相关的几个概念

二分图:是这样一个图,它的顶点可以分类两个集合X和Y,所有的边关联在两个顶点中,恰好一个属于集合X,另一个属于集合Y。
最大匹配: 图中包含边数最多的匹配称为图的最大匹配。
完美匹配: 如果所有点都在匹配边上,称这个最大匹配是完美匹配。
最小覆盖: 最小覆盖要求用最少的点(X集合或Y集合的都行)让每条边都至少和其中一个点关联。可以证明:最少的点(即覆盖数)=最大匹配数
最小路径覆盖:用尽量少的不相交简单路径覆盖有向无环图G的所有结点。解决此类问题可以建立一个二分图模型。把所有顶点i拆成两个:X结点集中的i和Y结点集中的i',如果有边i->j,则在二分图中引入边i->j',设二分图最大匹配为m,则结果就是n-m。
最大独立集问题:在N个点的图G中选出m个点,使这m个点两两之间没有边.求m最大值.如果图G满足二分图条件,则可以用二分图匹配来做.最大独立集点数 = N - 最大匹配数。

你可能感兴趣的:(二分图匹配相关的几个概念)