实验要求可以参考deeplearning的tutorial, Exercise: PCA in 2D。
实验在二维数据上进行PCA降维,PCA白化处理,以及ZCA白化处理,原理可以参考之间的博客,下面直接贴代码。
在实验中,我计算了每一次原始数据,PCA旋转,PCA白化处理,以及ZCA白化处理后的协方差矩阵,结果为:
计算协方差我使用了matlab自带的cov(x),它要求矩阵x的每一行代表一个数据,这个tutorial实验说明求得的协方差矩阵的结果不同,为matlab计算的时候需要除以n-1(n为数据的个数),但这些对最后的结果都是没有影响的。
close all %%================================================================ %% Step 0: Load data % We have provided the code to load data from pcaData.txt into x. % x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to % the kth data point.Here we provide the code to load natural image data into x. % You do not need to change the code below. x = load('pcaData.txt','-ascii'); figure(1); scatter(x(1, :), x(2, :)); title('Raw data'); original = cov(x')%*(size(x,2)-1) %%================================================================ %% Step 1a: Implement PCA to obtain U % Implement PCA to obtain the rotation matrix U, which is the eigenbasis % sigma. % -------------------- YOUR CODE HERE -------------------- u = zeros(size(x, 1)); % You need to compute this sigma = x*x'/size(x, 2); [u,s,v] = svd(sigma); % -------------------------------------------------------- hold on plot([0 u(1,1)], [0 u(2,1)]); plot([0 u(1,2)], [0 u(2,2)]); scatter(x(1, :), x(2, :)); hold off %%================================================================ %% Step 1b: Compute xRot, the projection on to the eigenbasis % Now, compute xRot by projecting the data on to the basis defined % by U. Visualize the points by performing a scatter plot. % -------------------- YOUR CODE HERE -------------------- xRot = zeros(size(x)); % You need to compute this xRot = u'*x; rotate = cov(xRot')%*(size(x,2)-1) % -------------------------------------------------------- % Visualise the covariance matrix. You should see a line across the % diagonal against a blue background. figure(2); scatter(xRot(1, :), xRot(2, :)); title('xRot'); %%================================================================ %% Step 2: Reduce the number of dimensions from 2 to 1. % Compute xRot again (this time projecting to 1 dimension). % Then, compute xHat by projecting the xRot back onto the original axes % to see the effect of dimension reduction % -------------------- YOUR CODE HERE -------------------- k = 1; % Use k = 1 and project the data onto the first eigenbasis xHat = zeros(size(x)); % You need to compute this xTiled = zeros(size(x)); xTiled(1:k,:) = xRot(1:k,:); xHat = u*xTiled; % -------------------------------------------------------- figure(3); scatter(xHat(1, :), xHat(2, :)); title('xHat'); %%================================================================ %% Step 3: PCA Whitening % Complute xPCAWhite and plot the results. epsilon = 1e-5; % -------------------- YOUR CODE HERE -------------------- xPCAWhite = zeros(size(x)); % You need to compute this epsilon = 1e-5; xPCAWhite = diag(1./sqrt(diag(s) + epsilon)) * xRot; PCAWhite = cov(xPCAWhite')%*(size(x,2)-1) % -------------------------------------------------------- figure(4); scatter(xPCAWhite(1, :), xPCAWhite(2, :)); title('xPCAWhite'); %%================================================================ %% Step 3: ZCA Whitening % Complute xZCAWhite and plot the results. % -------------------- YOUR CODE HERE -------------------- xZCAWhite = zeros(size(x)); % You need to compute this xZCAWhite = u * xPCAWhite; ZCAWhite = cov(xZCAWhite')%*(size(x,2)-1) % -------------------------------------------------------- figure(5); scatter(xZCAWhite(1, :), xZCAWhite(2, :)); title('xZCAWhite'); %% Congratulations! When you have reached this point, you are done! % You can now move onto the next PCA exercise. :)