- 机器学习的数学基础:必备的线性代数和概率论
AI天才研究院
AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍机器学习(MachineLearning)是一种利用数据训练算法来自动发现隐藏规律和模式的技术。它广泛应用于各个领域,如图像识别、自然语言处理、推荐系统等。机器学习的核心是数学模型,这些模型需要基于线性代数和概率论来构建和优化。因此,掌握机器学习的数学基础是非常重要的。在本文中,我们将从以下几个方面进行阐述:背景介绍核心概念与联系核心算法原理和具体操作步骤以及数学模型公式详细讲解具体代
- 线性代数05 齐次/非齐次线性方程组的具体解集
xiaotang_sama
数学&运筹优化#线性代数线性代数方程求解
通过线性代数系列博客03,我们了解了齐次线性方程组与非齐次线性方程组,了解了线性方程组的系数矩阵的行列式与解的情况的关系。接下来我们就要探究,如果我们需要具体求解线性方程,我们需要怎么做?在具体了解求解线性方程组的过程之前,我们需要先明确几个概念。1明确概念(1)齐次线性方程组:常数项全为0的线性方程组(2)齐次线性方程组的解的情况:零解,或者非零解。在这里,我们只需要讨论非零解的具体情况就好了。
- 青少年编程与数学 02-015 大学数学知识点 02课题、线性代数
明月看潮生
编程与数学第02阶段线性代数青少年编程机器学习编程与数学
青少年编程与数学02-015大学数学知识点02课题、线性代数一、向量与矩阵二、行列式三、线性方程组四、向量空间五、线性变换六、内积空间七、正交变换与对称矩阵八、二次型九、奇异值分解十、应用实例总结线性代数是数学的一个重要分支,广泛应用于物理、计算机科学、工程、经济学等领域。这里是线性代数的主要知识点详细汇总。一、向量与矩阵向量定义:向量是具有大小和方向的量,可以表示为有序数组。运算:加法:对应分量
- 人工智能之数学基础:矩阵分解之LU分解
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能矩阵机器学习矩阵分解LU分解线性代数
本文重点LU分解是线性代数中一种重要的矩阵分解方法,它将一个方阵分解为一个下三角矩阵(L)和一个上三角矩阵(U)的乘积。这种分解方法在数值线性代数中有着广泛的应用,特别是在求解线性方程组、计算矩阵的行列式、求逆矩阵等方面。LU分解的基本概念设A是一个n×n的方阵,如果存在一个下三角矩阵L和一个上三角矩阵U,使得A=LU,则称A可以进行LU分解。其中,L是一个下三角矩阵,即矩阵中的所有元素都位于主对
- 大模型学习路线以及资料--更新中
暗夜猎手-大魔王
大模型学习学习
总结了一下大模型学习路线和基本学习资料,后续会不断更新。从零开始学习吧,不然的话很可能被这个时代抛弃。0.数学基础-线性代数(矩阵运算、特征值分解)《线性代数》4小时速成课(不挂科)|框框老师_哔哩哔哩_bilibili《线性代数》4小时速成课(不挂科)|框框老师共计9条视频,包括:第一讲:行列式的计算(一)(四种题型)、第一讲:行列式的计算(续)(三种题型)、第二讲:矩阵(一)(三种题型)等,U
- 大模型学习路线(2025最新)年薪800K程序员分享给你,存一下吧很难找全的!
AI大模型-王哥
学习产品经理人工智能AI大模型程序员大模型学习
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 深度学习中的数据类型
Plan-C-
深度学习人工智能
1.NumPy数组(numpy.ndarray)核心定位:科学计算的基础工具,处理数值多维数组。特点:高效数值运算:底层用C实现,适合数学计算(如矩阵乘法、傅里叶变换)。内存连续存储:数据在内存中连续排列,优化计算速度。维度灵活:支持从0维(标量)到N维数组。典型场景:数学计算(如线性代数、随机数生成)。图像、音频等多维数据处理。与其他库(如Pandas、深度学习框架)交互的中间格式。2.Pand
- 终于!有人总结了大模型学习资料!
AI产品经理
学习transformer语言模型人工智能数据库
大家好,我发现了一个大模型学习的神库,包含大量LLM教材和资料,并绘制了学习路线图。可以帮助快速掌握大模型的应用和开发技巧。前排提示,文末有大模型AGI-CSDN独家资料包哦!GitHub地址:https://github.com/mlabonne/llm-courseLLM基础知识1.机器学习之数学基石在踏足机器学习的殿堂之前,深入理解其背后的数学原理至关重要。线性代数:它如同桥梁,连接着算法与
- python用于科学计算的扩展库_python科学计算库
沈一冰
一.numpy库和matplotlib库的学习(1)numpy库介绍:科学计算包,支持N维数组运算、处理大型矩阵、成熟的广播函数库、矢量运算、线性代数、傅里叶变换、随机数生成,并可与C++/Fortran语言无缝结合np.array([1,2,3])列表转换为数组;np.array((1,2,3))元组转换为数组;np.array(range(5))把range对象转换为数组;np.arange(
- 2025年大模型学习路线:神仙级教程无私分享,助你成为AI领域高手!大模型学习路线就看这一篇就够了!
大模型入门教程
学习人工智能AI大模型大模型大模型学习大模型教程程序员
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- 【C++游戏引擎开发】第1周《线性代数》(3):矩阵乘法的SIMD优化与转置加速
JuicyActiveGilbert
C++游戏引擎开发知识点线性代数c++游戏引擎
一、矩阵乘法数学原理与性能瓶颈1.1数学原理矩阵乘法定义为:给定两个矩阵A(m×n)\mathrm{A}(m×n)A(m×n)和B(n×p)\mathrm{B}(n×p)B(n×p),它们的乘积C=A×B\mathrm{C}=A×BC=A×B是一个m×p\mathrm{m}×pm×p的矩阵,其中:Ci,j=∑k=1nAi,k⋅Bk,jC_{i,j}=\sum_{k=1}^{n}A_{i,k}\cd
- 第八节 MATLAB运算符
程序员老冯头
MATLAB教程matlab算法开发语言
MATLAB运算符数组中唯一的值运算符是一个符号,它将要执行的数学或者逻辑操作传达给编译器执行。MATLAB设计工作主要是对整个矩阵和阵列。因此,运算符在MATLAB工作标和非标量数据。MATLAB的基本运算类型:算术运算符逻辑运算符关系运算符位运算集合运算算术运算符MATLAB的工作针对的是整个矩阵和阵列,它允许两种不同类型的算术运算:矩阵算术运算阵列算术运算矩阵的算术运算是线性代数中的定义相同
- 蓝桥备赛指南(8):矩阵基础
神里流~霜灭
蓝桥备赛矩阵c++算法数据结构c语言排序算法
矩阵的乘法矩阵的乘法是《线性代数》中的基础内容。乘法规则:(行数和列数)只有当相乘的两个矩阵的左矩阵的列数等于右矩阵的行数时,才能相乘。(详细详看《线性代数》)矩阵的乘法的规则用一句话来描述就是第一个矩阵A的第i行和第二个矩阵B的第j列的各m个元素对应相乘再相加就得到新矩阵C[i][j]的值。如图:代码实现://代码实现//n行k列for(inti=1;i<=n;++i){for(intj=1;j
- 【深度学习与大模型基础】第7章-特征分解与奇异值分解
lynn-66
深度学习与大模型基础算法机器学习人工智能
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如机器学习、图像处理和数据分析等。特征分解将一个方阵分解为特征值和特征向量的形式,帮助我们理解矩阵的结构和性质。1.特征分解的定义对于一个n×n的方阵A,如果存在一个非零向量v和一个标量λ,使得:则称λ为矩阵A的特征值,v为对应的特征向量。特征分解将矩阵A分解为:其中:Q是由特征
- 【MATLAB】
不掉发的小刘
MATLABmatlab开发语言
数学计算与运算基础数学函数函数名功能示例sin(x)正弦函数sin(pi/2)→1cos(x)余弦函数cos(0)→1sqrt(x)平方根sqrt(4)→2exp(x)指数函数exp(1)→e≈2.718log(x)自然对数log(e)→1abs(x)绝对值abs(5)→5线性代数函数名功能示例A\b解线性方程组Ax=bA=21;11,b=3;2,x=A\b→x=1;1det(A)矩阵行列式det
- 线性代数介绍
ZhuBin365
其它机器学习线性代数人工智能
线性代数介绍线性代数是数学的一个重要分支,它研究向量空间、线性变换和线性方程组。其概念抽象,应用广泛,是现代科学技术中不可或缺的数学工具。本篇将详细解释线性代数中的核心概念,包括行列式、矩阵、向量与向量空间、线性方程组、特征值与特征向量以及二次型,力求深入浅出,帮助读者全面理解。一、行列式(Determinants)行列式是线性代数中一个fundamental的概念,它是一个将方阵映射到一个标量的
- 线性代数-MIT 18.06-汇总
儒雅的钓翁
数学基础线性代数矩阵
第一讲:方程组的几何解释第二讲:矩阵消元第三讲:乘法和逆矩阵第四讲:AAA的LULULU分解第五讲:转换、置换、向量空间R第六讲:列空间和零空间第七讲:求解Ax=0Ax=0Ax=0,主变量,特解第八讲:求解Ax=bAx=bAx=b:可解性和解的结构第九讲:线性相关性、基、维数第十讲四个基本子空间第十一讲:矩阵空间、秩1矩阵和小世界图第十二讲:图和网络第十三讲:复习一第十四讲:正交向量与子空间第十五
- 《交互式线性代数》
wblong_cs
矩阵论线性代数矩阵
《交互式线性代数》*InteractiveLinearAlgebra*由DanMargalit和JosephRabinoff编写,是一本聚焦线性代数的教材。本书旨在教授线性代数的核心概念、方法及其应用,通过代数与几何相结合的方式,帮助读者深入理解线性代数的本质,培养解决实际问题的能力。核心内容线性方程组求解代数方法:介绍线性方程组的基本概念,如解的定义、解集等。通过消元法和行变换,将方程组转化为增
- 对比与详解:QR 分解、奇异值分解(SVD)与 Schur 分解及其他可产生正交基的方法
DuHz
机器学习人工智能信号处理算法矩阵信息与通信线性代数
对比与详解:QR分解、奇异值分解(SVD)与Schur分解及其他可产生正交基的方法在数值线性代数与矩阵分析中,常见的能产生正交(或酉)矩阵的分解方法包括QR分解、奇异值分解(SVD)、Schur分解等。这些方法虽然都会产生一个(或多个)正交矩阵,但它们在适用范围、分解形式、计算重点和应用场景等方面各不相同。本文将尽量对这些分解方法进行系统地介绍与对比。1.正交矩阵(Orthogonal/Unita
- 人工智能知识架构详解
CodeJourney.
数据库人工智能算法架构
人工智能(ArtificialIntelligence,简称AI)作为当今最具影响力和发展潜力的技术领域之一,正深刻地改变着我们的生活、工作和社会。从智能家居到自动驾驶,从医疗诊断到金融投资,人工智能的应用无处不在。要全面深入地理解和掌握人工智能,构建一个清晰、系统的知识架构至关重要。二、基础数学(一)线性代数线性代数是人工智能的重要数学基础之一。矩阵运算在数据表示和变换中起着核心作用。例如,在图
- 人工智能之数学基础:数学对人工智能技术发展的作用
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能深度学习机器学习神经网络自然语言处理数学
本文重点数学是人工智能技术发展的基础,它提供了人工智能技术所需的数学理论和算法,包括概率论、统计学、线性代数、微积分、图论等等。本文将从以下几个方面探讨数学对人工智能技术发展的作用。概率论和统计学概率论和统计学是人工智能技术中最为重要的数学分支之一。概率论和统计学的应用范围非常广泛,包括机器学习、数据挖掘、自然语言处理、计算机视觉等领域。在人工智能技术中,概率论和统计学主要用于处理不确定性的问题,
- 人工智能之数学基础:基变换和坐标变换的区别
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能机器学习算法基变换坐标变换线性变换
本文重点基变换和坐标变换是线性代数中的两个重要概念,它们描述了向量在不同基底或坐标系下的表示和转换关系。矩阵矩阵不仅可以作为线性变换的描述,而且可以作为一组基地描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去,这就是基变换和坐标变换。定义与本质基变换:定义:基变换是指向量在不同基底下表示的关系的数学描述。它涉
- SciPy 安装指南
froginwe11
开发语言
SciPy安装指南引言SciPy是一个开源的Python科学计算库,它基于NumPy库,提供了大量的科学和工程计算功能。SciPy包含了用于优化、线性代数、积分、插值、信号和图像处理、特殊函数、统计分析、离散傅里叶变换等功能的模块。本文将详细介绍如何在您的系统上安装SciPy。安装前的准备在开始安装SciPy之前,请确保您的系统满足以下条件:您已安装Python,且版本在3.5或更高。您已安装pi
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- 【数学 线性代数】差分约束
软件架构师何志丹
#算法基础线性代数c++数学差分约束负环最短路
前言C++算法与数据结构本博文代码打包下载什么是差分约束x系列是变量,y系列是常量,差分系统由若干如下不等式组成。x1-x2classCDisNegativeRing//贝尔曼-福特算法{public:boolDis(intN,vector>edgeFromToW,intstart){vectorpre(N,iDef);pre[start]=0;for(intt=0;tm_vDis;};最长路对应
- 探索未来计算的新篇章:量子++(Quantum++)
傅尉艺Maggie
探索未来计算的新篇章:量子++(Quantum++)qppModernC++quantumcomputinglibrary项目地址:https://gitcode.com/gh_mirrors/qpp/qpp项目简介Quantum++是一个现代化的C++通用量子计算库,专注于模板头文件的设计。这个库采用C++17标准编写,依赖性极低,仅依赖于高效能的线性代数库Eigen3和可选的OpenMP并行处
- matlab 矩阵的数组平方和,MATLAB中的矩阵和数组
跟英语死磕到底
matlab矩阵的数组平方和
本文概述MATLAB一次处理整个矩阵和数组。所有类型的数据变量都存储为多维数组,可以是字符,字符串或数字。二维数组称为矩阵,通常用于线性代数。在MATLAB中创建数组我们可以在MATLAB中以多种方式创建数组:通过在元素之间使用空格:此命令创建一个具有一行四列的数组变量”A”。存储在工作空间中的’A’变量和输出将在命令窗口中显示为:通过在元素之间使用逗号:此命令将创建一个具有一行四列的数组变量”a
- 【数学基础】线性代数#1向量和矩阵初步
-一杯为品-
数学线性代数矩阵
本系列内容介绍:主要参考资料:《深度学习》[美]伊恩·古德菲洛等著《机器人数学基础》吴福朝张铃著文章为自学笔记,仅供参考。目录标量、向量、矩阵和张量矩阵运算单位矩阵和逆矩阵线性相关和生成子空间范数特殊类型的矩阵和向量特征分解奇异值分解Moore-Penrose伪逆迹运算行列式标量、向量、矩阵和张量标量标量是一个单独的数。向量向量是一列有序排列的数:x=[x1x2⋮xn]\boldsymbolx=\
- 【动手学深度学习】#1PyTorch基础操作
-一杯为品-
机器学习深度学习人工智能
主要参考学习资料:《动手学深度学习》阿斯顿·张等著【动手学深度学习PyTorch版】哔哩哔哩@跟李牧学AI目录1.1数据操作1.1.1入门1.1.2运算符1.1.3广播机制1.1.4索引和切片1.1.5节省内存1.1.6转换为其他Python对象1.2数据预处理1.2.1读取数据集1.2.2处理缺失值1.2.3转换为张量格式1.3线性代数1.3.1标量1.3.2向量1.3.3矩阵1.3.4张量1.
- AI大模型学习路线:从入门到精通的完整指南【2025最新】
AI大模型-大飞
人工智能学习大模型LLMAI程序员大模型学习
引言近年来,以GPT、BERT、LLaMA等为代表的AI大模型彻底改变了人工智能领域的技术格局。它们不仅在自然语言处理(NLP)任务中表现卓越,还在计算机视觉、多模态交互等领域展现出巨大潜力。本文旨在为开发者、研究者和技术爱好者提供一条清晰的学习路径,帮助读者逐步掌握大模型的核心技术并实现实际应用。一、基础阶段:构建知识体系数学与理论基础线性代数:矩阵运算、特征值与奇异值分解是大模型参数优化的基础
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">