- Python爬虫与1688图片搜索API接口:深度解析与显著收益
一、1688图片搜索API概述1688作为阿里巴巴旗下的B2B电商平台,其图片搜索API为开发者提供了通过图片搜索商品的能力。这项技术基于计算机视觉和深度学习算法,能够识别上传图片中的商品特征,并在1688海量商品库中寻找相似或相同的产品。API核心功能以图搜图:上传商品图片获取相似商品列表商品识别:自动识别图片中的商品类别和关键特征精准匹配:对于标品可实现高精度匹配批量处理:支持多图片批量搜索二
- 从代码学习深度学习 - 含并行连结的网络(GoogLeNet)PyTorch版
飞雪白鹿€
深度学习-pytorch版深度学习pytorch
文章目录前言一、GoogLeNet的理论基础1.1背景与创新点1.2.Inception模块的工作原理二、完整代码实现与解析2.1.环境准备与工具函数2.2.数据加载-Fashion-MNIST2.3.Inception模块设计2.4.GoogLeNet完整模型2.5.训练函数2.6.运行训练三、训练结果与分析3.1.性能分析3.2.可视化结果3.3.模型局限性四、扩展与改进建议总结前言深度学习近
- 什么是LLM 大语言模型(Large Language Models, LLM),大语言模型的关键组成部分?大型语言模型如何运作?如何训练大型语言模型?
未禾
AI语言模型人工智能自然语言处理
LLM大语言模型(LargeLanguageModels,LLM)什么是大型语言模型?大型语言模型(LargeLanguageModels,LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有自注意力功能的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。转换器LLM能够进行无监督的训练,但更精确的解释是转换器
- 什么是AI大模型?常见的AI大模型有哪些?
AI产品经理
人工智能机器学习深度学习自然语言处理gpt
什么是AI大模型?在人工智能领域,"AI大模型"的官方概念通常指的是具有大量参数的机器学习模型,这些模型能够捕捉和学习数据中的复杂模式。参数是模型中的变量,它们在训练过程中不断调整,以便模型能够更准确地进行预测或分类任务。AI大模型通常具有以下特点:高参数量:AI大模型含有数百万甚至数十亿的参数,这使得它们能够学习和记忆大量信息。深度学习架构:它们通常基于深度学习架构,如卷积神经网络(CNNs)用
- 第五十三周:文献阅读
m0_66015895
人工智能python算法
目录摘要Abstract文献阅读:一种用于室内空气质量预测的新型变分自编码器深度学习框架现有问题提出方法方法论1、偏最小二乘(PLS)2、变分自动编码器(VAE)3、变分自动编码器回归器(VAER)所提出的方法(PLS-VAER)研究实验1、数据集2、评估指标3、实验过程4、实验结果代码实现总结摘要本周我阅读的文献《Anoveldeeplearningframeworkwithvariationa
- activeloopai/deeplake v4.1.16震撼发布!版本控制+新数据类型+可观测性全面升级
福大大架构师每日一题
文心一言vschatgptgolangdeepseek
引言:深度学习数据管理平台activeloopai/deeplake近日发布了v4.1.16版本,带来了多项重磅更新!本次升级聚焦于版本控制、新数据类型的支持以及可观测性增强,为数据科学家和工程师提供了更高效、更灵活的数据管理体验。核心更新亮点1.版本控制与分支管理更强大支持分支合并(MergeBranches):现在可以像Git一样轻松合并不同分支的数据,团队协作更加流畅。标签管理优化:版本标记
- 【数据可视化应用】绘制类别插值地图(附Python代码)
文宇肃然
可视化工具数据分析实战应用python机器学习sklearn
sklearn.KNeighborsClassifier()终于这篇推文将机器学习和可视化完美的结合起来,即:机器学习处理数据,数据可视化技术展现、美化数据(以后的深度学习部分也会延续这个风格,只不过比重不同而已)。首先,我们给出我们今天的数据:散点数据和四川省的地图文件,python读取操作如下:import pandas as pdimport numpy as npfrom sklearn.
- 深度学习平台demo(基础知识)- Keras相关知识点整理(tensorflow2.4)
竹叶青lvye
深度学习平台demokerastensorflow深度学习可视化
Demo程序中的卷积神经网络用的keras,所以是初次接触的童靴,可能会陌生,这里简单介绍下,具体的一些知识点还是从官方文档获取,博主只列举几个常用的。毕竟17年的时候就曾用keras落地过实际项目,后来keras被集成到tensorflow2.x里了,所以博主对此框架还是有一定的了解。应用Applications-Keras中文文档https://keras.io/zh/applications
- 深度学习篇---PaddleDetection&PaddleOCR
Ronin-Lotus
程序代码篇深度学习篇上位机知识篇深度学习paddlepaddle人工智能pythonpaddledetectionpaddleocr
文章目录前言1.代码2.代码介绍2.1**导入模块**2.2**配置区域**2.3ExpressInfoProcessor类2.4**主程序**:3.使用说明3.1环境准备3.2模型准备3.3数据库初始化3.4串口配置3.5信息提取优化3.6注意事项前言本文简单介绍了PaddleDetection和PaddleOCR相结合的示例代码,通过两个PaddlePaddle框架下的工具包结合使用同时达到图
- 深度学习篇---模型参数调优
Ronin-Lotus
深度学习篇图像处理篇上位机知识篇深度学习人工智能pythonpaddlepaddlepytorch学习率batch
文章目录前言一、Adam学习(lr)1.默认学习率2.较小的学习率模型复杂数据集规模小3.较大的学习率模型简单训练初期4.学习率衰减策略固定步长衰减指数衰减二、训练轮数(epoch)1.经验值设定小数据集与简单模型大数据集和复杂模型2.监控指标变化损失函数与准确率:验证集表现:3.学习率衰减结合4.逐步增加三、批次大小(batch)1.较小的batch大小优点更好的泛化能力更快逃离局部最优缺点训练
- 深度学习中常见的专业术语汇总
GiantGo
深度学习深度学习名称解释
本硕博都是搞机械的匠人,当然也想做一下交叉学科的东西,蹭一下人工智能的热点。虽然世界是个草台班子,但是来都来了,咱也要把这场戏演好。记得之前网上爆料有位大学生发了很多水文,对,是交叉学科的,把CS的东西用到自己的专业上。由于出名了,论文就立马受到各大网友关注,离谱的是有个SSIM(FID?越小越好)指标本来是越大越好,上界是1,结果论文列出的结果大于1。因此,水归水,打好基础还是必要的,毕竟磨刀不
- 学习率调度器工具函数(get_scheduler)补充讲解
Code_Geo
学习python
学习率调度器工具函数(get_scheduler)get_scheduler是HuggingFaceTransformers深度学习框架中用于创建学习率调度器(LearningRateScheduler)的工具函数。它的核心作用是动态调整训练过程中的学习率,以优化模型收敛速度、稳定性和最终性能一、get_scheduler的主要用途1.1.支持多种学习率调整策略通过指定name参数,可以灵活选择不
- Python 深度学习实战:聊天机器人
AI天才研究院
AI实战DeepSeekR1&大数据AI人工智能大模型Python实战大数据人工智能语言模型JavaPython架构设计
Python深度学习实战:聊天机器人关键词:Python、深度学习、聊天机器人、Seq2Seq、注意力机制、Transformer1.背景介绍近年来,随着人工智能技术的飞速发展,聊天机器人(Chatbot)逐渐走进了大众的视野。从简单的问答系统到如今能够进行多轮对话、情感分析的智能助手,聊天机器人在客服、娱乐、教育等领域展现出了巨大的应用潜力。深度学习作为人工智能领域的核心技术之一,为聊天机器人的
- RAG 中的检索技术优化:向量检索与语义匹配的创新实践
hy098543
AIGC
目录引言向量检索技术的创新高维向量索引优化基于深度学习的向量表示学习语义匹配技术的创新实践多模态语义匹配基于知识图谱的语义匹配增强向量检索与语义匹配协同优化动态调整检索策略联合训练优化结论引言在检索增强生成(RAG)架构中,检索技术的优劣直接影响着生成内容的质量与相关性。准确、高效地从海量文本数据中检索出与输入相关的信息,是RAG系统发挥强大功能的基石。向量检索与语义匹配作为RAG检索环节的核心技
- Windows 7 下 TensorFlow 安装入门(PyCharm 版)
架构魔术
windowstensorflowpycharm编程
Windows7下TensorFlow安装入门(PyCharm版)TensorFlow是一个流行的开源机器学习框架,广泛应用于深度学习和人工智能领域。本文将指导您在Windows7操作系统上使用PyCharm安装和配置TensorFlow。以下是详细的步骤和相应的源代码。步骤1:安装Python首先,您需要安装Python。TensorFlow支持Python3.5-3.8版本。您可以从Pytho
- 大模型技术之基于大模型构建本地知识库!
程序员二飞
搜索引擎语言模型人工智能自然语言处理chatgpt学习
前言随着人工智能技术的发展,大模型已成为智能系统进步的关键力量。前排提示,文末有大模型AGI-CSDN独家资料包哦!模型以其庞大的数据容量和深度学习能力,为处理复杂任务提供了前所未有的可能性。但在特定应用场景下仍面临挑战,尤其是在需要快速、准确响应的情境中。为了克服这些限制,构建一个基于大模型的本地知识库显得尤为重要。01关于本地知识库本地知识库是一个存储特定领域知识的数据集,它可以是结构化的数据
- 深入详解自然语言处理(NLP)中的语言模型:BERT、GPT及其他预训练模型的原理与应用
猿享天开
人工智能数学基础专讲人工智能自然语言处理
【自然语言处理】——深入详解自然语言处理(NLP)中的语言模型:BERT、GPT及其他预训练模型的原理与应用自然语言处理(NLP)是人工智能(AI)领域中的重要分支,旨在通过计算机处理和分析自然语言数据,使机器能够理解、生成并与人类语言进行交互。近年来,基于深度学习的预训练语言模型(如BERT、GPT)在NLP任务中表现出了巨大的成功,它们改变了传统NLP技术的发展路径,推动了文本理解和生成技术的
- 【深度学习】yolov8使用的一个小warning
weixin_40293999
深度学习yolov深度学习YOLO人工智能
PSD:\code\JerseyNumberTrackerStrategy>&D:/Users/51442/anaconda3/python.exed:/code/JerseyNumberTrackerStrategy/classes/Yolov8Detector.pyWARNING⚠️imgsz=[760,2306]mustbemultipleofmaxstride32,updatingto[7
- 2025最新版:用Python快速上手人工智能与机器学习
请为小H留灯
人工智能python机器学习
一、前言1.1AI与机器学习的崛起1.2Python的独特优势二、迈入机器学习世界2.1机器学习概述2.1.1机器学习的分类与应用领域2.2监督学习2.2.1线性回归与决策树2.2.2支持向量机与随机森林2.3无监督学习2.3.1聚类与降维2.3.2自组织映射与关联规则2.4模型评估与调优:2.4.1交叉验证与超参数调优的常见技巧三、深度学习揭秘3.1深度学习基础3.1.1深度学习的关键概念与应用
- 大语言模型应用指南:什么是大语言模型
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题《大语言模型应用指南:什么是大语言模型》关键词(1)大语言模型(2)深度学习(3)自然语言处理(4)序列模型(5)Transformer(6)神经网络(7)预训练语言模型摘要本文将深入探讨大语言模型(LargeLanguageModel)的概念、原理、应用及其发展历程。我们将通过逐步分析,从基础概念入手,详细解释大语言模型的工作机制,包括其训练算法、推理算法以及关键数学模型。通过实际项目案
- 【揭秘】什么是AI写作?AI写作是助手还是威胁?
ychenhub
AIGCAI写作AIGCAI写作ai写作
什么是AI写作?AI写作是指利用人工智能技术,特别是自然语言处理(NLP)和机器学习(ML)技术,结合深度学习算法,通过大规模语料库和预训练模型来模仿和生成人类语言文本内容的过程。它通过分析大量的语言数据、学习语言的模式、规律和结构,从而能够掌握语法、词汇、句子结构等语言要素,并生成与输入数据相似或符合特定需求的文本内容。AI写作可以应用于多种场景,如新闻报道、广告文案、社交媒体推文、小说创作、诗
- 魔高一尺,道高一丈:中文语境下的 AI 创作与反抄袭攻防战
海棠AI实验室
“智理探索“-深入AI理论与学术创新人工智能深度学习AI抄袭
目录引言:AI创作浪潮下的“隐形战争”AI创作的“阿喀琉斯之踵”:为何能被检测?检测技术的“火眼金睛”:从统计到深度学习反检测的“隐身术”:AI如何“瞒天过海”?技术之外的博弈:伦理、法律与公平性未来之路:走向共生还是持续对抗?结语:重新定义创造力的时代在数字时代的浪潮中,人工智能(AI)正以前所未有的速度渗透到我们生活的方方面面。从文心一言到ChatGPT,大型语言模型(LLMs)不仅能与我们流
- 优化算法深度剖析:梯度下降、动量方法与自适应学习率
KangkangLoveNLP
#正则化基础知识算法学习人工智能深度学习transformer机器学习pytorch
深度学习中常见的优化算法1.基础优化算法1.1梯度下降(GradientDescent)通过计算损失函数对参数的梯度,沿着梯度下降的方向更新模型参数,直到找到最小值或足够接近最小值的解。其核心思想是基于损失函数的梯度方向来调整参数,以最小化损失。1.1.2基本原理梯度下降的核心思想是基于损失函数的梯度方向来调整参数。具体来说,它通过计算损失函数对参数的梯度,沿着梯度下降的方向更新模型参数,直到找到
- 如何使用深度学习目标检测算法Yolov5训练反光衣数据集模型识别检测反光衣及其他衣服
目标检测数据集合
行为类别睡觉姿态课堂等深度学习目标检测算法
目标检测算法Yolov5训练反光衣数据集模型建立基于深度学习yolov5反光衣的检测文章目录**标题:基于YOLOv5的反光衣检测全流程参考****1.安装依赖****2.准备数据集**数据集结构示例创建`data.yaml`文件**3.配置并训练YOLOv5模型**训练模型模型评估**4.推理代码****5.构建GUI应用程序**反光衣数据集格式txt:两个类别反光衣和其他衣服标注:txt格式)
- 2025年大模型学习路线:神仙级教程无私分享,助你成为AI领域高手!大模型学习路线就看这一篇就够了!
大模型入门教程
学习人工智能AI大模型大模型大模型学习大模型教程程序员
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- 《动手学深度学习》之卷积神经网络
QxwOnly
人工智能深度学习神经网络深度学习
文章目录从全连接层到卷积不变性限制多层感知机平移不变性局部性卷积通道图像卷积互相关运算特征映射和感受野填充和步幅填充步幅多输入多输出通道多输入通道1×11\times11×1卷积层汇聚层最大汇聚层和平均汇聚层卷积神经网络(LeNet)LeNet总结从全连接层到卷积卷积神经网络(convolutionalneuralnetworks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法。不变性计
- 深度学习 Deep Learning 第12章 深度学习的主流应用
odoo中国
人工智能AI编程深度学习人工智能
深度学习DeepLearning第12章深度学习的主流应用内容概要本周深入探讨了深度学习在多个领域的应用,包括计算机视觉、语音识别、自然语言处理以及其他领域如推荐系统和知识表示。本章强调了硬件和软件基础设施的重要性,特别是GPU在加速神经网络训练中的关键作用。此外,还讨论了模型压缩、动态结构以及专用硬件实现等策略,以提高模型的效率和性能。通过具体的应用案例,展示了深度学习如何在实际问题中发挥作用。
- 语音识别项目实战:从零到一
一碗黄焖鸡三碗米饭
人工智能前沿与实践语音识别人工智能tensorflow机器学习python深度学习
语音识别项目实战:从零到一语音识别技术近年来在各个领域得到了广泛的应用,例如语音助手、智能家居控制、语音输入法等。随着深度学习的快速发展,语音识别的准确性和实用性得到了极大的提升。本文将围绕语音识别项目实战展开,详细讲解从零到一构建一个语音识别系统的完整流程。我们将以DeepSpeech作为实现基础,使用Python和TensorFlow等流行的工具,结合实际代码案例,帮助大家深入理解如何从头开始
- 人脸识别项目实战:从零到一
一碗黄焖鸡三碗米饭
人工智能前沿与实践tensorflow机器学习人工智能python深度学习人脸识别
目录人脸识别项目实战:从零到一1.人脸识别技术概述2.人脸识别项目的开发流程2.1准备环境2.2数据采集与预处理2.3特征提取与模型训练2.3.1使用预训练模型进行人脸特征提取2.3.2构建识别系统2.4人脸识别系统的优化2.4.1使用深度学习优化模型2.4.2数据增强2.5部署与应用2.5.1使用Flask部署人脸识别模型2.6系统测试与性能优化3.总结与展望人脸识别作为计算机视觉中的重要应用之
- 深度学习框架比较:PyTorch vs TensorFlow
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
《深度学习框架比较:PyTorchvsTensorFlow》关键词深度学习,PyTorch,TensorFlow,框架比较,开发体验,性能,生态系统摘要本文将深入比较深度学习框架PyTorch和TensorFlow,从框架概述、基础API、开发体验、性能、生态系统等多个角度进行全面分析。通过详细的项目实战案例,读者将更直观地理解这两种框架的差异和适用场景。文章旨在为深度学习开发者提供选型指南,助力
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =