opengl 光照

opengl 光照
光照很好的区分出了,3d与2d的视觉效果。

光照的本质是通过片源shader对当前的点的像素作改变,使它变暗或才变亮。
color = 
		// Ambient : simulates indirect lighting
		MaterialAmbientColor +
		// Diffuse : "color" of the object
		MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) +
		// Specular : reflective highlight, like a mirror
		MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance);

但它的这个变化与模型的位置,光源的位置,模型的法向量有关。

#include "glew.h"
#include <glfw3.h>
#include "common/loadShader.h"
#include "common/controls.h"
#include "common/objloader.h"

#include "glm.hpp"
#include "ext.hpp"
GLFWwindow* window;
int main(void)
{
	//GLFWwindow* window;

	/* Initialize the library */
	if (!glfwInit())
		return -1;

	/* Create a windowed mode window and its OpenGL context */
	window = glfwCreateWindow(480, 320, "Hello World", NULL, NULL);
	if (!window)
	{
		glfwTerminate();
		return -1;
	}

	/* Make the window's context current */
	glfwMakeContextCurrent(window);

	// Needed in core profile
	if( glewInit() != GLEW_OK)
	{
		glfwTerminate();
		return -1;
	}

	// Our vertices. Tree consecutive floats give a 3D vertex; Three consecutive vertices give a triangle.
	// A cube has 6 faces with 2 triangles each, so this makes 6*2=12 triangles, and 12*3 vertices
	std::vector<glm::vec3> vertices;
	std::vector<glm::vec2> uvs;
	std::vector<glm::vec3> normals; // Won't be used at the moment.
	bool res = loadOBJ("./resource/suzanne.obj", vertices, uvs, normals);
	
	//This will identify our vertex buffer
	GLuint vertexbuffer;

	
	//Generate 1 buffer,put the resulting identifier in vertexbuffer
	glGenBuffers(1,&vertexbuffer);		

	//The following commands will talk about our 'vertexbuffer' buffer
	glBindBuffer(GL_ARRAY_BUFFER,vertexbuffer);

	//Give our vertices to OpenGL.
 	glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(glm::vec3), &vertices[0], GL_STATIC_DRAW);

	GLuint uvbuffer;
	glGenBuffers(1, &uvbuffer);
	glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
	glBufferData(GL_ARRAY_BUFFER, uvs.size() * sizeof(glm::vec2), &uvs[0], GL_STATIC_DRAW);

	GLuint normalbuffer;
	glGenBuffers(1, &normalbuffer);
	glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
	glBufferData(GL_ARRAY_BUFFER, normals.size() * sizeof(glm::vec3), &normals[0], GL_STATIC_DRAW);
	GLuint Texture = loadDDS("./resource/uvmap.DDS");//loadBMP_custom("./resource/uvtemplate.bmp");
	// One color for each vertex. They were generated randomly.	


	GLuint programID = LoadShaders("./shader/vertex.shader","./shader/fragment.shader");
	
	glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
	/* Loop until the user closes the window */

	// Projection matrix : 45° Field of View, 4:3 ratio, display range : 0.1 unit  100 units
	//glm::mat4 Projection = glm::ortho(-4.0f/3.0f, 4.0f/3.0f, -1.0f, 1.0f, 0.1f, 100.0f);
	
	
		
	
		// Get a handle for our "MVP" uniform.
		// Only at initialisation time.
		GLuint MatrixID = glGetUniformLocation(programID,"MVP");		
		GLuint ViewMatrixID = glGetUniformLocation(programID, "V");
		GLuint ModelMatrixID = glGetUniformLocation(programID, "M");
		GLuint LightID = glGetUniformLocation(programID, "LightPosition_worldspace");
		// Send our transformation to the currently bound shader,
		// in the "MVP" uniform
		// For each model you render, since the MVP will be different (at least the M part)
		

		GLuint TextureID = glGetUniformLocation(programID,"myTextureSampler");
		int width,height;	
		glfwGetWindowSize(window,&width,&height);
		float centerX = width;
		float centerY = height;
		centerX /= 2;
		centerY /= 2;		
		//initMatrices();

	while (glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS && !glfwWindowShouldClose(window))
	{
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
		glUseProgram(programID);
		computeMatricesFromInputs();
		glm::mat4 ProjectionMatrix = getProjectionMatrix();
		glm::mat4 ViewMatrix = getViewMatrix();
		glm::mat4 ModelMatrix = glm::mat4(1.0);
		glm::mat4 MVP = ProjectionMatrix * ViewMatrix * ModelMatrix;

		// Send our transformation to the currently bound shader, 
		// in the "MVP" uniform
		glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
		glUniformMatrix4fv(ModelMatrixID, 1, GL_FALSE, &ModelMatrix[0][0]);
		glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]);

		glm::vec3 lightPos = glm::vec3(4,4,4);
		glUniform3f(LightID, lightPos.x, lightPos.y, lightPos.z);


		glActiveTexture(GL_TEXTURE0);
		glBindTexture(GL_TEXTURE_2D,Texture);
		glUniform1i(TextureID, 0);
		

		glEnableVertexAttribArray(0);
		glBindBuffer(GL_ARRAY_BUFFER,vertexbuffer);
		glVertexAttribPointer(
			0,			// attribute 0. No particular reason for 0, but must match the layout in the shader.
			3,			// size
			GL_FLOAT,	// type
			GL_FALSE,	// normalized?
			0,			// stride
			(void*)0	// array buffer offset
			);

		

		glEnableVertexAttribArray(1);
		glBindBuffer(GL_ARRAY_BUFFER,uvbuffer);	
		glVertexAttribPointer(
			1,			// attribute 0. No particular reason for 0, but must match the layout in the shader.
			2,			// size
			GL_FLOAT,	// type
			GL_FALSE,	// normalized?
			0,			// stride
			(void*)0	// array buffer offset
			);


		glEnableVertexAttribArray(2);
		glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
		glVertexAttribPointer(
			2,                                // attribute
			3,                                // size
			GL_FLOAT,                         // type
			GL_FALSE,                         // normalized?
			0,                                // stride
			(void*)0                          // array buffer offset
			);

// 		glEnable(GL_DEPTH_TEST);
// 		glDepthFunc(GL_LESS);
		glDrawArrays(GL_TRIANGLES, 0, vertices.size() );
		//glDrawArrays(GL_TRIANGLES,0,12*3);// Starting from vertex 0; 3 vertices total -> 1 triangle
		
			
		

		
		

		
		glDisableVertexAttribArray(0);
		glDisableVertexAttribArray(1);
		/* Swap front and back buffers */
		glfwSwapBuffers(window);

		/* Poll for and process events */
		glfwPollEvents();
	}

	glfwTerminate();
	return 0;
}

#version 330 core

// Input vertex data, different for all executions of this shader.
layout(location = 0) in vec3 vertexPosition_modelspace;
layout(location = 1) in vec2 vertexUV;
layout(location = 2) in vec3 vertexNormal_modelspace;

// Output data ; will be interpolated for each fragment.
out vec2 UV;
out vec3 Position_worldspace;
out vec3 Normal_cameraspace;
out vec3 EyeDirection_cameraspace;
out vec3 LightDirection_cameraspace;

// Values that stay constant for the whole mesh.
uniform mat4 MVP;
uniform mat4 V;
uniform mat4 M;
uniform vec3 LightPosition_worldspace;

void main(){

	// Output position of the vertex, in clip space : MVP * position
	gl_Position =  MVP * vec4(vertexPosition_modelspace,1);
	
	// Position of the vertex, in worldspace : M * position
	Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz;
	
	// Vector that goes from the vertex to the camera, in camera space.
	// In camera space, the camera is at the origin (0,0,0).
	vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz;
	EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace;

	// Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity.
	vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz;
	LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace;
	
	// Normal of the the vertex, in camera space
	Normal_cameraspace = ( V * M * vec4(vertexNormal_modelspace,0)).xyz; // Only correct if ModelMatrix does not scale the model ! Use its inverse transpose if not.
	
	// UV of the vertex. No special space for this one.
	UV = vertexUV;
}

in vec2 UV;
in vec3 Position_worldspace;
in vec3 Normal_cameraspace;
in vec3 EyeDirection_cameraspace;
in vec3 LightDirection_cameraspace;

// Ouput data
out vec3 color;

// Values that stay constant for the whole mesh.
uniform sampler2D myTextureSampler;
uniform mat4 MV;
uniform vec3 LightPosition_worldspace;

void main(){

	// Light emission properties
	// You probably want to put them as uniforms
	vec3 LightColor = vec3(1,1,1);
	float LightPower = 50.0f;
	
	// Material properties
	vec3 MaterialDiffuseColor = texture2D( myTextureSampler, UV ).rgb;
	vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor;
	vec3 MaterialSpecularColor = vec3(0.3,0.3,0.3);

	// Distance to the light
	float distance = length( LightPosition_worldspace - Position_worldspace );

	// Normal of the computed fragment, in camera space
	vec3 n = normalize( Normal_cameraspace );
	// Direction of the light (from the fragment to the light)
	vec3 l = normalize( LightDirection_cameraspace );
	// Cosine of the angle between the normal and the light direction, 
	// clamped above 0
	//  - light is at the vertical of the triangle -> 1
	//  - light is perpendicular to the triangle -> 0
	//  - light is behind the triangle -> 0
	float cosTheta = clamp( dot( n,l ), 0,1 );
	
	// Eye vector (towards the camera)
	vec3 E = normalize(EyeDirection_cameraspace);
	// Direction in which the triangle reflects the light
	vec3 R = reflect(-l,n);
	// Cosine of the angle between the Eye vector and the Reflect vector,
	// clamped to 0
	//  - Looking into the reflection -> 1
	//  - Looking elsewhere -> < 1
	float cosAlpha = clamp( dot( E,R ), 0,1 );
	
	color = 
		// Ambient : simulates indirect lighting
		MaterialAmbientColor +
		// Diffuse : "color" of the object
		MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) +
		// Specular : reflective highlight, like a mirror
		MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance);

}





你可能感兴趣的:(opengl 光照)