HDU 5429 Geometric Progression(大数模板)——BestCoder Round #54(div.1 div.2)

Geometric Progression

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)


Problem Description
Determine whether a sequence is a Geometric progression or not.

In mathematics, a **geometric progression**, also known as a **geometric sequence**, is a sequence of numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with common ratio 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with common ratio 1/2.

Examples of a geometric sequence are powers  rk  of a fixed number r, such as  2k  and  3k . The general form of a geometric sequence is

a, ar, ar2, ar3, ar4, 

where r ≠ 0 is the common ratio and a is a scale factor, equal to the sequence's start value.
 

Input
First line contains a single integer  T(T20)  which denotes the number of test cases. 

For each test case, there is an positive integer  n(1n100)  which denotes the length of sequence,and next line has  n  nonnegative numbers  Ai  which allow leading zero.The digit's length of  Ai  no larger than  100 .
 

Output
For each case, output "Yes" or "No".
 

Sample Input
   
   
   
   
4 1 0 3 1 1 1 3 1 4 2 5 16 8 4 2 1
 

Sample Output
   
   
   
   
Yes Yes No Yes
 

Source
BestCoder Round #54 (div.2)
 

/************************************************************************/

附上该题对应的中文题

Geometric Progression

 
 
 Time Limit: 2000/1000 MS (Java/Others)
 
 Memory Limit: 65536/65536 K (Java/Others)
问题描述
判断一个数列是否为等比数列。

在数学中,等比数列,是一个数列,这个数列中的第一项之后的每一项是前一项乘上一个固定的非零实数(我们称之为公比)。比如,数列 2, 6, 18, 54, ... 是一个公比为3的等比数列。 类似的,10,5,2.5,1.25,...是一个公比为0.5的等比数列。
等比数列的一般形式是:
a,ar,ar^2,ar^3,ar^4,...a,ar,ar2,ar3,ar4,...
其中r!=0,r为公比,a是首项(a可以是任何实数)
输入描述
第一行一个整数T,表示数据组数。T \leq 20T20
对于每一个组,第一行一个整数n(1 \leq n \leq 100)n(1n100),接下来第二行nn个数允许前导零的非负整数A_iAi,表示数列。保证A_iAi位数\leq 100100
输出描述
对于每一个组,输出Yes或者No。
输入样例
4
1
0
3
1 1 1
3
1 4 2
5
16 8 4 2 1
输出样例
Yes
Yes
No
Yes
/****************************************************/

出题人的解题思路:

Geometric Progression

判断是否为等比数列,可以检验对所有1 < i < n \quad A[i-1]*A[i+1]=A[i]*A[i]1<i<nA[i1]A[i+1]=A[i]A[i] 是否都成立。

直接高精度也是资词的。

比较简单的方法是选择若干质数(保证乘积大于10^{200}10200),在模意义下检验。复杂度O(k*n)O(kn)kk表示选取的质数个数。

这道题其实就是让我们判断所给的数列是不是一个等比数列,难就难在它是大数,如果说你会用Java,那就直接上吧,不会的,我们可以套一下大数模板
相信绝大多数人都会判断等比数列,不过你是否是通过求后一项与前一项的比值来判断的呢,这样的话过程中就会出现浮点数了,反而使得我们有点不好控制

这时,我们不能忘记等比数列的一个等价式,即s[i-1]*s[i+1]==s[i]*[i]

当然,一些边界值需要另外判断,例如项数n<3的,和数列中存在0的

比如说数列 0 0 0 0 是等比数列,它的公比可以是除0以外的任何实数

但是 1 0 0 0 又不是等比数列,因为公比不可以为0

因此,在判断存在0的数列时,只需判断是不是数列中所有的元素都为0即可

/*
+,-,*,/,% 可直接使用.
CIN读入
bignum数据类型
*/
#include <iostream>
#include <string.h>
#include<stdio.h>
#include<iostream>
using namespace std;
#define DIGIT    4
#define DEPTH    10000
#define MAX     100
typedef int bignum_t[MAX+1];
int read(bignum_t a,istream& is=cin){
    char buf[MAX*DIGIT+1],ch;
    int i,j;
    memset((void*)a,0,sizeof(bignum_t));
    if (!(is>>buf))    return 0;
    for (a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)
        ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch;
    for (a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');
    for (i=1;i<=a[0];i++)
        for (a[i]=0,j=0;j<DIGIT;j++)
            a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0';
    for (;!a[a[0]]&&a[0]>1;a[0]--);
    return 1;
}

void write(const bignum_t a,ostream& os=cout){
    int i,j;
    for (os<<a[i=a[0]],i--;i;i--)
        for (j=DEPTH/10;j;j/=10)
            os<<a[i]/j%10;
}

int comp(const bignum_t a,const bignum_t b){
    int i;
    if (a[0]!=b[0])
        return a[0]-b[0];
    for (i=a[0];i;i--)
        if (a[i]!=b[i])
            return a[i]-b[i];
    return 0;
}

int comp(const bignum_t a,const int b){
    int c[12]={1};
    for (c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++);
    return comp(a,c);
}

int comp(const bignum_t a,const int c,const int d,const bignum_t b){
    int i,t=0,O=-DEPTH*2;
    if (b[0]-a[0]<d&&c)
        return 1;
    for (i=b[0];i>d;i--){
        t=t*DEPTH+a[i-d]*c-b[i];
        if (t>0) return 1;
        if (t<O) return 0;
    }
    for (i=d;i;i--){
        t=t*DEPTH-b[i];
        if (t>0) return 1;
        if (t<O) return 0;
    }
    return t>0;
}

void add(bignum_t a,const bignum_t b){
    int i;
    for (i=1;i<=b[0];i++)
        if ((a[i]+=b[i])>=DEPTH)
            a[i]-=DEPTH,a[i+1]++;
    if (b[0]>=a[0])
        a[0]=b[0];
    else
        for (;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++);
    a[0]+=(a[a[0]+1]>0);
}

void add(bignum_t a,const int b){
    int i=1;
    for (a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++);
    for (;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
}

void sub(bignum_t a,const bignum_t b){
    int i;
    for (i=1;i<=b[0];i++)
        if ((a[i]-=b[i])<0)
            a[i+1]--,a[i]+=DEPTH;
    for (;a[i]<0;a[i]+=DEPTH,i++,a[i]--);
    for (;!a[a[0]]&&a[0]>1;a[0]--);
}

void sub(bignum_t a,const int b){
    int i=1;
    for (a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
    for (;!a[a[0]]&&a[0]>1;a[0]--);
}

void sub(bignum_t a,const bignum_t b,const int c,const int d){
    int i,O=b[0]+d;
    for (i=1+d;i<=O;i++)
        if ((a[i]-=b[i-d]*c)<0)
            a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH;
    for (;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
    for (;!a[a[0]]&&a[0]>1;a[0]--);
}

void mul(bignum_t c,const bignum_t a,const bignum_t b){
    int i,j;
    memset((void*)c,0,sizeof(bignum_t));
    for (c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++)
        for (j=1;j<=b[0];j++)
            if ((c[i+j-1]+=a[i]*b[j])>=DEPTH)
                c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH;
    for (c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--);
}

void mul(bignum_t a,const int b){
    int i;
    for (a[1]*=b,i=2;i<=a[0];i++){
        a[i]*=b;
        if (a[i-1]>=DEPTH)
            a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH;
    }
    for (;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
    for (;!a[a[0]]&&a[0]>1;a[0]--);
}

void mul(bignum_t b,const bignum_t a,const int c,const int d){
    int i;
    memset((void*)b,0,sizeof(bignum_t));
    for (b[0]=a[0]+d,i=d+1;i<=b[0];i++)
        if ((b[i]+=a[i-d]*c)>=DEPTH)
            b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH;
    for (;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH);
    for (;!b[b[0]]&&b[0]>1;b[0]--);
}

void div(bignum_t c,bignum_t a,const bignum_t b){
    int h,l,m,i;
    memset((void*)c,0,sizeof(bignum_t));
    c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1;
    for (i=c[0];i;sub(a,b,c[i]=m,i-1),i--)
        for (h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1)
            if (comp(b,m,i-1,a)) h=m-1;
            else l=m;
    for (;!c[c[0]]&&c[0]>1;c[0]--);
    c[0]=c[0]>1?c[0]:1;
}

void div(bignum_t a,const int b,int& c){
    int i;
    for (c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--);
    for (;!a[a[0]]&&a[0]>1;a[0]--);
}

void sqrt(bignum_t b,bignum_t a){
    int h,l,m,i;
    memset((void*)b,0,sizeof(bignum_t));
    for (i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--)
        for (h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1)
            if (comp(b,m,i-1,a)) h=m-1;
            else l=m;
    for (;!b[b[0]]&&b[0]>1;b[0]--);
    for (i=1;i<=b[0];b[i++]>>=1);
}

int length(const bignum_t a){
    int t,ret;
    for (ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++);
    return ret>0?ret:1;
}

int digit(const bignum_t a,const int b){
    int i,ret;
    for (ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--);
    return ret%10;
}

int zeronum(const bignum_t a){
    int ret,t;
    for (ret=0;!a[ret+1];ret++);
    for (t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++);
    return ret;
}

void comp(int* a,const int l,const int h,const int d){
    int i,j,t;
    for (i=l;i<=h;i++)
        for (t=i,j=2;t>1;j++)
            while (!(t%j))
                a[j]+=d,t/=j;
}

void convert(int* a,const int h,bignum_t b){
    int i,j,t=1;
    memset(b,0,sizeof(bignum_t));
    for (b[0]=b[1]=1,i=2;i<=h;i++)
        if (a[i])
            for (j=a[i];j;t*=i,j--)
                if (t*i>DEPTH)
                    mul(b,t),t=1;
    mul(b,t);
}

void combination(bignum_t a,int m,int n){
    int* t=new int[m+1];
    memset((void*)t,0,sizeof(int)*(m+1));
    comp(t,n+1,m,1);
    comp(t,2,m-n,-1);
    convert(t,m,a);
    delete []t;
}

void permutation(bignum_t a,int m,int n){
    int i,t=1;
    memset(a,0,sizeof(bignum_t));
    a[0]=a[1]=1;
    for (i=m-n+1;i<=m;t*=i++)
        if (t*i>DEPTH)
            mul(a,t),t=1;
    mul(a,t);
}

#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))

int read(bignum_t a,int &sgn,istream& is=cin){
    char str[MAX*DIGIT+2],ch,*buf;
    int i,j;
    memset((void*)a,0,sizeof(bignum_t));
    if (!(is>>str)) return 0;
    buf=str,sgn=1;
    if (*buf=='-') sgn=-1,buf++;
    for (a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--)
        ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch;
    for (a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0');
    for (i=1;i<=a[0];i++)
        for (a[i]=0,j=0;j<DIGIT;j++)
            a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0';
    for (;!a[a[0]]&&a[0]>1;a[0]--);
    if (a[0]==1&&!a[1]) sgn=0;
    return 1;
}

struct bignum{
    bignum_t num;
    int sgn;
public:
inline bignum(){memset(num,0,sizeof(bignum_t));num[0]=1;sgn=0;}
//inline int operator!(){return num[0]==1&&!num[1];}
inline bignum& operator=(const bignum& a){memcpy(num,a.num,sizeof(bignum_t));sgn=a.sgn;return *this;}
inline bignum& operator=(const int a){memset(num,0,sizeof(bignum_t));num[0]=1;sgn=SGN(a);add(num,sgn*a);return *this;};
inline bignum& operator+=(const bignum& a){if(sgn==a.sgn)add(num,a.num);else if(sgn&&a.sgn){int ret=comp(num,a.num);if(ret>0)sub(num,a.num);else if(ret<0){bignum_t t;
    memcpy(t,num,sizeof(bignum_t));memcpy(num,a.num,sizeof(bignum_t));sub(num,t);sgn=a.sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn;return *this;}
inline bignum& operator+=(const int a){if(sgn*a>0)add(num,ABS(a));else if(sgn&&a){int ret=comp(num,ABS(a));if(ret>0)sub(num,ABS(a));else if(ret<0){bignum_t t;
    memcpy(t,num,sizeof(bignum_t));memset(num,0,sizeof(bignum_t));num[0]=1;add(num,ABS(a));sgn=-sgn;sub(num,t);}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)sgn=SGN(a),add(num,ABS(a));return *this;}
inline bignum operator+(const bignum& a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret+=a;return ret;}
inline bignum operator+(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret+=a;return ret;}
inline bignum& operator-=(const bignum& a){if(sgn*a.sgn<0)add(num,a.num);else if(sgn&&a.sgn){int ret=comp(num,a.num);if(ret>0)sub(num,a.num);else if(ret<0){bignum_t t;
    memcpy(t,num,sizeof(bignum_t));memcpy(num,a.num,sizeof(bignum_t));sub(num,t);sgn=-sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)add(num,a.num),sgn=-a.sgn;return *this;}
inline bignum& operator-=(const int a){if(sgn*a<0)add(num,ABS(a));else if(sgn&&a){int ret=comp(num,ABS(a));if(ret>0)sub(num,ABS(a));else if(ret<0){bignum_t t;
    memcpy(t,num,sizeof(bignum_t));memset(num,0,sizeof(bignum_t));num[0]=1;add(num,ABS(a));sub(num,t);sgn=-sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)sgn=-SGN(a),add(num,ABS(a));return *this;}
inline bignum operator-(const bignum& a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret-=a;return ret;}
inline bignum operator-(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret-=a;return ret;}
inline bignum& operator*=(const bignum& a){bignum_t t;mul(t,num,a.num);memcpy(num,t,sizeof(bignum_t));sgn*=a.sgn;return *this;}
inline bignum& operator*=(const int a){mul(num,ABS(a));sgn*=SGN(a);return *this;}
inline bignum operator*(const bignum& a){bignum ret;mul(ret.num,num,a.num);ret.sgn=sgn*a.sgn;return ret;}
inline bignum operator*(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));mul(ret.num,ABS(a));ret.sgn=sgn*SGN(a);return ret;}
inline bignum& operator/=(const bignum& a){bignum_t t;div(t,num,a.num);memcpy(num,t,sizeof(bignum_t));sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn;return *this;}
inline bignum& operator/=(const int a){int t;div(num,ABS(a),t);sgn=(num[0]==1&&!num[1])?0:sgn*SGN(a);return *this;}
inline bignum operator/(const bignum& a){bignum ret;bignum_t t;memcpy(t,num,sizeof(bignum_t));div(ret.num,t,a.num);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn;return ret;}
inline bignum operator/(const int a){bignum ret;int t;memcpy(ret.num,num,sizeof(bignum_t));div(ret.num,ABS(a),t);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a);return ret;}
inline bignum& operator%=(const bignum& a){bignum_t t;div(t,num,a.num);if (num[0]==1&&!num[1])sgn=0;return *this;}
inline int operator%=(const int a){int t;div(num,ABS(a),t);memset(num,0,sizeof(bignum_t));num[0]=1;add(num,t);return t;}
inline bignum operator%(const bignum& a){bignum ret;bignum_t t;memcpy(ret.num,num,sizeof(bignum_t));div(t,ret.num,a.num);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn;return ret;}
inline int operator%(const int a){bignum ret;int t;memcpy(ret.num,num,sizeof(bignum_t));div(ret.num,ABS(a),t);memset(ret.num,0,sizeof(bignum_t));ret.num[0]=1;add(ret.num,t);return t;}
inline bignum& operator++(){*this+=1;return *this;}
inline bignum& operator--(){*this-=1;return *this;};
inline int operator>(const bignum& a){return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0);}
inline int operator>(const int a){return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0);}
inline int operator>=(const bignum& a){return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0);}
inline int operator>=(const int a){return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0);}
inline int operator<(const bignum& a){return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0);}
inline int operator<(const int a){return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0);}
inline int operator<=(const bignum& a){return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0);}
inline int operator<=(const int a){return sgn<0?(a<0?comp(num,-a)>=0:1):(sgn>0?(a>0?comp(num,a)<=0:0):a>=0);}
inline int operator==(const bignum& a){return (sgn==a.sgn)?!comp(num,a.num):0;}
inline int operator==(const int a){return (sgn*a>=0)?!comp(num,ABS(a)):0;}
inline int operator!=(const bignum& a){return (sgn==a.sgn)?comp(num,a.num):1;}
inline int operator!=(const int a){return (sgn*a>=0)?comp(num,ABS(a)):1;}
inline int operator[](const int a){return digit(num,a);}
friend inline istream& operator>>(istream& is,bignum& a){read(a.num,a.sgn,is);return is;}
friend inline ostream& operator<<(ostream& os,const bignum& a){if(a.sgn<0)os<<'-';write(a.num,os);return os;}
friend inline bignum sqrt(const bignum& a){bignum ret;bignum_t t;memcpy(t,a.num,sizeof(bignum_t));sqrt(ret.num,t);ret.sgn=ret.num[0]!=1||ret.num[1];return ret;}
friend inline bignum sqrt(const bignum& a,bignum& b){bignum ret;memcpy(b.num,a.num,sizeof(bignum_t));sqrt(ret.num,b.num);ret.sgn=ret.num[0]!=1||ret.num[1];b.sgn=b.num[0]!=1||ret.num[1];return ret;}
inline int length(){return ::length(num);}
inline int zeronum(){return ::zeronum(num);}
inline bignum C(const int m,const int n){combination(num,m,n);sgn=1;return *this;}
inline bignum P(const int m,const int n){permutation(num,m,n);sgn=1;return *this;}
};
#define N 105
bignum s[N];
int main()
{
    int t,n,i,k;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        for(i=k=0;i<n;i++)
        {
            cin>>s[i];
            if(s[i]==0)
                k++;
        }
        if(k>0&&k<n)
        {
            puts("No");
            continue;
        }
        if(n<3)
        {
            puts("Yes");
            continue;
        }
        for(i=1;i<n-1;i++)
            if(s[i-1]*s[i+1]!=s[i]*s[i])
                break;
        if(i<n-1)
            puts("No");
        else
            puts("Yes");
    }
    return 0;
}
菜鸟成长记


你可能感兴趣的:(ACM,大数,等比数列)