4 1 0 3 1 1 1 3 1 4 2 5 16 8 4 2 1
Yes Yes No Yes
/************************************************************************/
附上该题对应的中文题
判断一个数列是否为等比数列。 在数学中,等比数列,是一个数列,这个数列中的第一项之后的每一项是前一项乘上一个固定的非零实数(我们称之为公比)。比如,数列 2, 6, 18, 54, ... 是一个公比为3的等比数列。 类似的,10,5,2.5,1.25,...是一个公比为0.5的等比数列。 等比数列的一般形式是: a,ar,ar2,ar3,ar4,... 其中r!=0,r为公比,a是首项(a可以是任何实数)
第一行一个整数T,表示数据组数。T≤20 对于每一个组,第一行一个整数n(1≤n≤100),接下来第二行n个数允许前导零的非负整数Ai,表示数列。保证Ai位数≤100。
对于每一个组,输出Yes或者No。
4 1 0 3 1 1 1 3 1 4 2 5 16 8 4 2 1
Yes Yes No Yes
出题人的解题思路:
判断是否为等比数列,可以检验对所有1<i<nA[i−1]∗A[i+1]=A[i]∗A[i] 是否都成立。
直接高精度也是资词的。
比较简单的方法是选择若干质数(保证乘积大于10200),在模意义下检验。复杂度O(k∗n)。k表示选取的质数个数。
这道题其实就是让我们判断所给的数列是不是一个等比数列,难就难在它是大数,如果说你会用Java,那就直接上吧,不会的,我们可以套一下大数模板这时,我们不能忘记等比数列的一个等价式,即s[i-1]*s[i+1]==s[i]*[i]
当然,一些边界值需要另外判断,例如项数n<3的,和数列中存在0的
比如说数列 0 0 0 0 是等比数列,它的公比可以是除0以外的任何实数
但是 1 0 0 0 又不是等比数列,因为公比不可以为0
因此,在判断存在0的数列时,只需判断是不是数列中所有的元素都为0即可
/* +,-,*,/,% 可直接使用. CIN读入 bignum数据类型 */ #include <iostream> #include <string.h> #include<stdio.h> #include<iostream> using namespace std; #define DIGIT 4 #define DEPTH 10000 #define MAX 100 typedef int bignum_t[MAX+1]; int read(bignum_t a,istream& is=cin){ char buf[MAX*DIGIT+1],ch; int i,j; memset((void*)a,0,sizeof(bignum_t)); if (!(is>>buf)) return 0; for (a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch; for (a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for (i=1;i<=a[0];i++) for (a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0'; for (;!a[a[0]]&&a[0]>1;a[0]--); return 1; } void write(const bignum_t a,ostream& os=cout){ int i,j; for (os<<a[i=a[0]],i--;i;i--) for (j=DEPTH/10;j;j/=10) os<<a[i]/j%10; } int comp(const bignum_t a,const bignum_t b){ int i; if (a[0]!=b[0]) return a[0]-b[0]; for (i=a[0];i;i--) if (a[i]!=b[i]) return a[i]-b[i]; return 0; } int comp(const bignum_t a,const int b){ int c[12]={1}; for (c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++); return comp(a,c); } int comp(const bignum_t a,const int c,const int d,const bignum_t b){ int i,t=0,O=-DEPTH*2; if (b[0]-a[0]<d&&c) return 1; for (i=b[0];i>d;i--){ t=t*DEPTH+a[i-d]*c-b[i]; if (t>0) return 1; if (t<O) return 0; } for (i=d;i;i--){ t=t*DEPTH-b[i]; if (t>0) return 1; if (t<O) return 0; } return t>0; } void add(bignum_t a,const bignum_t b){ int i; for (i=1;i<=b[0];i++) if ((a[i]+=b[i])>=DEPTH) a[i]-=DEPTH,a[i+1]++; if (b[0]>=a[0]) a[0]=b[0]; else for (;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++); a[0]+=(a[a[0]+1]>0); } void add(bignum_t a,const int b){ int i=1; for (a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++); for (;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); } void sub(bignum_t a,const bignum_t b){ int i; for (i=1;i<=b[0];i++) if ((a[i]-=b[i])<0) a[i+1]--,a[i]+=DEPTH; for (;a[i]<0;a[i]+=DEPTH,i++,a[i]--); for (;!a[a[0]]&&a[0]>1;a[0]--); } void sub(bignum_t a,const int b){ int i=1; for (a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for (;!a[a[0]]&&a[0]>1;a[0]--); } void sub(bignum_t a,const bignum_t b,const int c,const int d){ int i,O=b[0]+d; for (i=1+d;i<=O;i++) if ((a[i]-=b[i-d]*c)<0) a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH; for (;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for (;!a[a[0]]&&a[0]>1;a[0]--); } void mul(bignum_t c,const bignum_t a,const bignum_t b){ int i,j; memset((void*)c,0,sizeof(bignum_t)); for (c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++) for (j=1;j<=b[0];j++) if ((c[i+j-1]+=a[i]*b[j])>=DEPTH) c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH; for (c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--); } void mul(bignum_t a,const int b){ int i; for (a[1]*=b,i=2;i<=a[0];i++){ a[i]*=b; if (a[i-1]>=DEPTH) a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH; } for (;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); for (;!a[a[0]]&&a[0]>1;a[0]--); } void mul(bignum_t b,const bignum_t a,const int c,const int d){ int i; memset((void*)b,0,sizeof(bignum_t)); for (b[0]=a[0]+d,i=d+1;i<=b[0];i++) if ((b[i]+=a[i-d]*c)>=DEPTH) b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH; for (;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH); for (;!b[b[0]]&&b[0]>1;b[0]--); } void div(bignum_t c,bignum_t a,const bignum_t b){ int h,l,m,i; memset((void*)c,0,sizeof(bignum_t)); c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1; for (i=c[0];i;sub(a,b,c[i]=m,i-1),i--) for (h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1) if (comp(b,m,i-1,a)) h=m-1; else l=m; for (;!c[c[0]]&&c[0]>1;c[0]--); c[0]=c[0]>1?c[0]:1; } void div(bignum_t a,const int b,int& c){ int i; for (c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--); for (;!a[a[0]]&&a[0]>1;a[0]--); } void sqrt(bignum_t b,bignum_t a){ int h,l,m,i; memset((void*)b,0,sizeof(bignum_t)); for (i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--) for (h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1) if (comp(b,m,i-1,a)) h=m-1; else l=m; for (;!b[b[0]]&&b[0]>1;b[0]--); for (i=1;i<=b[0];b[i++]>>=1); } int length(const bignum_t a){ int t,ret; for (ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++); return ret>0?ret:1; } int digit(const bignum_t a,const int b){ int i,ret; for (ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--); return ret%10; } int zeronum(const bignum_t a){ int ret,t; for (ret=0;!a[ret+1];ret++); for (t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++); return ret; } void comp(int* a,const int l,const int h,const int d){ int i,j,t; for (i=l;i<=h;i++) for (t=i,j=2;t>1;j++) while (!(t%j)) a[j]+=d,t/=j; } void convert(int* a,const int h,bignum_t b){ int i,j,t=1; memset(b,0,sizeof(bignum_t)); for (b[0]=b[1]=1,i=2;i<=h;i++) if (a[i]) for (j=a[i];j;t*=i,j--) if (t*i>DEPTH) mul(b,t),t=1; mul(b,t); } void combination(bignum_t a,int m,int n){ int* t=new int[m+1]; memset((void*)t,0,sizeof(int)*(m+1)); comp(t,n+1,m,1); comp(t,2,m-n,-1); convert(t,m,a); delete []t; } void permutation(bignum_t a,int m,int n){ int i,t=1; memset(a,0,sizeof(bignum_t)); a[0]=a[1]=1; for (i=m-n+1;i<=m;t*=i++) if (t*i>DEPTH) mul(a,t),t=1; mul(a,t); } #define SGN(x) ((x)>0?1:((x)<0?-1:0)) #define ABS(x) ((x)>0?(x):-(x)) int read(bignum_t a,int &sgn,istream& is=cin){ char str[MAX*DIGIT+2],ch,*buf; int i,j; memset((void*)a,0,sizeof(bignum_t)); if (!(is>>str)) return 0; buf=str,sgn=1; if (*buf=='-') sgn=-1,buf++; for (a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch; for (a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for (i=1;i<=a[0];i++) for (a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0'; for (;!a[a[0]]&&a[0]>1;a[0]--); if (a[0]==1&&!a[1]) sgn=0; return 1; } struct bignum{ bignum_t num; int sgn; public: inline bignum(){memset(num,0,sizeof(bignum_t));num[0]=1;sgn=0;} //inline int operator!(){return num[0]==1&&!num[1];} inline bignum& operator=(const bignum& a){memcpy(num,a.num,sizeof(bignum_t));sgn=a.sgn;return *this;} inline bignum& operator=(const int a){memset(num,0,sizeof(bignum_t));num[0]=1;sgn=SGN(a);add(num,sgn*a);return *this;}; inline bignum& operator+=(const bignum& a){if(sgn==a.sgn)add(num,a.num);else if(sgn&&a.sgn){int ret=comp(num,a.num);if(ret>0)sub(num,a.num);else if(ret<0){bignum_t t; memcpy(t,num,sizeof(bignum_t));memcpy(num,a.num,sizeof(bignum_t));sub(num,t);sgn=a.sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn;return *this;} inline bignum& operator+=(const int a){if(sgn*a>0)add(num,ABS(a));else if(sgn&&a){int ret=comp(num,ABS(a));if(ret>0)sub(num,ABS(a));else if(ret<0){bignum_t t; memcpy(t,num,sizeof(bignum_t));memset(num,0,sizeof(bignum_t));num[0]=1;add(num,ABS(a));sgn=-sgn;sub(num,t);}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)sgn=SGN(a),add(num,ABS(a));return *this;} inline bignum operator+(const bignum& a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret+=a;return ret;} inline bignum operator+(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret+=a;return ret;} inline bignum& operator-=(const bignum& a){if(sgn*a.sgn<0)add(num,a.num);else if(sgn&&a.sgn){int ret=comp(num,a.num);if(ret>0)sub(num,a.num);else if(ret<0){bignum_t t; memcpy(t,num,sizeof(bignum_t));memcpy(num,a.num,sizeof(bignum_t));sub(num,t);sgn=-sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)add(num,a.num),sgn=-a.sgn;return *this;} inline bignum& operator-=(const int a){if(sgn*a<0)add(num,ABS(a));else if(sgn&&a){int ret=comp(num,ABS(a));if(ret>0)sub(num,ABS(a));else if(ret<0){bignum_t t; memcpy(t,num,sizeof(bignum_t));memset(num,0,sizeof(bignum_t));num[0]=1;add(num,ABS(a));sub(num,t);sgn=-sgn;}else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0;}else if(!sgn)sgn=-SGN(a),add(num,ABS(a));return *this;} inline bignum operator-(const bignum& a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret-=a;return ret;} inline bignum operator-(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));ret.sgn=sgn;ret-=a;return ret;} inline bignum& operator*=(const bignum& a){bignum_t t;mul(t,num,a.num);memcpy(num,t,sizeof(bignum_t));sgn*=a.sgn;return *this;} inline bignum& operator*=(const int a){mul(num,ABS(a));sgn*=SGN(a);return *this;} inline bignum operator*(const bignum& a){bignum ret;mul(ret.num,num,a.num);ret.sgn=sgn*a.sgn;return ret;} inline bignum operator*(const int a){bignum ret;memcpy(ret.num,num,sizeof(bignum_t));mul(ret.num,ABS(a));ret.sgn=sgn*SGN(a);return ret;} inline bignum& operator/=(const bignum& a){bignum_t t;div(t,num,a.num);memcpy(num,t,sizeof(bignum_t));sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn;return *this;} inline bignum& operator/=(const int a){int t;div(num,ABS(a),t);sgn=(num[0]==1&&!num[1])?0:sgn*SGN(a);return *this;} inline bignum operator/(const bignum& a){bignum ret;bignum_t t;memcpy(t,num,sizeof(bignum_t));div(ret.num,t,a.num);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn;return ret;} inline bignum operator/(const int a){bignum ret;int t;memcpy(ret.num,num,sizeof(bignum_t));div(ret.num,ABS(a),t);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a);return ret;} inline bignum& operator%=(const bignum& a){bignum_t t;div(t,num,a.num);if (num[0]==1&&!num[1])sgn=0;return *this;} inline int operator%=(const int a){int t;div(num,ABS(a),t);memset(num,0,sizeof(bignum_t));num[0]=1;add(num,t);return t;} inline bignum operator%(const bignum& a){bignum ret;bignum_t t;memcpy(ret.num,num,sizeof(bignum_t));div(t,ret.num,a.num);ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn;return ret;} inline int operator%(const int a){bignum ret;int t;memcpy(ret.num,num,sizeof(bignum_t));div(ret.num,ABS(a),t);memset(ret.num,0,sizeof(bignum_t));ret.num[0]=1;add(ret.num,t);return t;} inline bignum& operator++(){*this+=1;return *this;} inline bignum& operator--(){*this-=1;return *this;}; inline int operator>(const bignum& a){return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0);} inline int operator>(const int a){return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0);} inline int operator>=(const bignum& a){return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0);} inline int operator>=(const int a){return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0);} inline int operator<(const bignum& a){return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0);} inline int operator<(const int a){return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0);} inline int operator<=(const bignum& a){return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0);} inline int operator<=(const int a){return sgn<0?(a<0?comp(num,-a)>=0:1):(sgn>0?(a>0?comp(num,a)<=0:0):a>=0);} inline int operator==(const bignum& a){return (sgn==a.sgn)?!comp(num,a.num):0;} inline int operator==(const int a){return (sgn*a>=0)?!comp(num,ABS(a)):0;} inline int operator!=(const bignum& a){return (sgn==a.sgn)?comp(num,a.num):1;} inline int operator!=(const int a){return (sgn*a>=0)?comp(num,ABS(a)):1;} inline int operator[](const int a){return digit(num,a);} friend inline istream& operator>>(istream& is,bignum& a){read(a.num,a.sgn,is);return is;} friend inline ostream& operator<<(ostream& os,const bignum& a){if(a.sgn<0)os<<'-';write(a.num,os);return os;} friend inline bignum sqrt(const bignum& a){bignum ret;bignum_t t;memcpy(t,a.num,sizeof(bignum_t));sqrt(ret.num,t);ret.sgn=ret.num[0]!=1||ret.num[1];return ret;} friend inline bignum sqrt(const bignum& a,bignum& b){bignum ret;memcpy(b.num,a.num,sizeof(bignum_t));sqrt(ret.num,b.num);ret.sgn=ret.num[0]!=1||ret.num[1];b.sgn=b.num[0]!=1||ret.num[1];return ret;} inline int length(){return ::length(num);} inline int zeronum(){return ::zeronum(num);} inline bignum C(const int m,const int n){combination(num,m,n);sgn=1;return *this;} inline bignum P(const int m,const int n){permutation(num,m,n);sgn=1;return *this;} }; #define N 105 bignum s[N]; int main() { int t,n,i,k; scanf("%d",&t); while(t--) { scanf("%d",&n); for(i=k=0;i<n;i++) { cin>>s[i]; if(s[i]==0) k++; } if(k>0&&k<n) { puts("No"); continue; } if(n<3) { puts("Yes"); continue; } for(i=1;i<n-1;i++) if(s[i-1]*s[i+1]!=s[i]*s[i]) break; if(i<n-1) puts("No"); else puts("Yes"); } return 0; }菜鸟成长记