IT程序员开发必备-各类资源下载清单,史上最全IT资源,个人收藏总结!
背景
前段时间一个项目中因为涉及大量的线程开发,把jdk cocurrent的代码重新再过了一遍。这篇文章中主要是记录一下学习ThreadPoolExecutor过程中容易被人忽略的点,Doug Lea的整个类设计还是非常nice的
正文
先看一副图,描述了ThreadPoolExecutor的工作机制:
整个ThreadPoolExecutor的任务处理有4步操作:
- 第一步,初始的poolSize < corePoolSize,提交的runnable任务,会直接做为new一个Thread的参数,立马执行
- 第二步,当提交的任务数超过了corePoolSize,就进入了第二步操作。会将当前的runable提交到一个block queue中
- 第三步,如果block queue是个有界队列,当队列满了之后就进入了第三步。如果poolSize < maximumPoolsize时,会尝试new 一个Thread的进行救急处理,立马执行对应的runnable任务
- 第四步,如果第三步救急方案也无法处理了,就会走到第四步执行reject操作。
几点说明:(相信这些网上一搜一大把,我这里简单介绍下,为后面做一下铺垫)
- block queue有以下几种实现:
1. ArrayBlockingQueue : 有界的数组队列
2. LinkedBlockingQueue : 可支持有界/无界的队列,使用链表实现
3. PriorityBlockingQueue : 优先队列,可以针对任务排序
4. SynchronousQueue : 队列长度为1的队列,和Array有点区别就是:client thread提交到block queue会是一个阻塞过程,直到有一个worker thread连接上来poll task。
- RejectExecutionHandler是针对任务无法处理时的一些自保护处理:
1. Reject 直接抛出Reject exception
2. Discard 直接忽略该runnable,不可取
3. DiscardOldest 丢弃最早入队列的的任务
4. CallsRun 直接让原先的client thread做为worker线程,进行执行
容易被人忽略的点:
1. pool threads启动后,以后的任务获取都会通过block queue中,获取堆积的runnable task.
所以建议:
block size >= corePoolSize ,不然线程池就没任何意义
2. corePoolSize 和 maximumPoolSize的区别, 和大家正常理解的数据库连接池不太一样。
* 据dbcp pool为例,会有minIdle , maxActive配置。minIdle代表是常驻内存中的threads数量,maxActive代表是工作的最大线程数。
* 这里的corePoolSize就是连接池的maxActive的概念,它没有minIdle的概念(每个线程可以设置keepAliveTime,超过多少时间多有任务后销毁线程,但不会固定保持一定数量的threads)。
* 这里的maximumPoolSize,是一种救急措施的第一层。当threadPoolExecutor的工作threads存在满负荷,并且block queue队列也满了,这时代表接近崩溃边缘。这时允许临时起一批threads,用来处理runnable,处理完后立马退出。
所以建议:
maximumPoolSize >= corePoolSize =期望的最大线程数。 (我曾经配置了corePoolSize=1, maximumPoolSize=20, blockqueue为无界队列,最后就成了单线程工作的pool。典型的配置错误)
3. 善用blockqueue和reject组合. 这里要重点推荐下CallsRun的Rejected Handler,从字面意思就是让调用者自己来运行。
我们经常会在线上使用一些线程池做异步处理,比如我前面做的
(业务层)异步并行加载技术分析和设计, 将原本串行的请求都变为了并行操作,但过多的并行会增加系统的负载(比如软中断,上下文切换)。所以肯定需要对线程池做一个size限制。但是为了引入异步操作后,避免因在block queue的等待时间过长,所以需要在队列满的时,执行一个callsRun的策略,并行的操作又转为一个串行处理,这样就可以保证尽量少的延迟影响。
所以建议:
RejectExecutionHandler = CallsRun , blockqueue size = 2 * poolSize (为啥是2倍poolSize,主要一个考虑就是瞬间高峰处理,允许一个thread等待一个runnable任务)
Btrace容量规划
再提供一个btrace脚本,分析线上的thread pool容量规划是否合理,可以运行时输出poolSize等一些数据。
01 |
import static com.sun.btrace.BTraceUtils.addToAggregation; |
02 |
import static com.sun.btrace.BTraceUtils.field; |
03 |
import static com.sun.btrace.BTraceUtils.get; |
04 |
import static com.sun.btrace.BTraceUtils.newAggregation; |
05 |
import static com.sun.btrace.BTraceUtils.newAggregationKey; |
06 |
import static com.sun.btrace.BTraceUtils.printAggregation; |
07 |
import static com.sun.btrace.BTraceUtils.println; |
08 |
import static com.sun.btrace.BTraceUtils.str; |
09 |
import static com.sun.btrace.BTraceUtils.strcat; |
11 |
import java.lang.reflect.Field; |
12 |
import java.util.concurrent.atomic.AtomicInteger; |
14 |
import com.sun.btrace.BTraceUtils; |
15 |
import com.sun.btrace.aggregation.Aggregation; |
16 |
import com.sun.btrace.aggregation.AggregationFunction; |
17 |
import com.sun.btrace.aggregation.AggregationKey; |
18 |
import com.sun.btrace.annotations.BTrace; |
19 |
import com.sun.btrace.annotations.Kind; |
20 |
import com.sun.btrace.annotations.Location; |
21 |
import com.sun.btrace.annotations.OnEvent; |
22 |
import com.sun.btrace.annotations.OnMethod; |
23 |
import com.sun.btrace.annotations.OnTimer; |
24 |
import com.sun.btrace.annotations.Self; |
29 |
* @author jianghang 2011-4-7 下午10:59:53 |
32 |
public class AsyncLoadTracer { |
34 |
private static AtomicInteger rejecctCount = BTraceUtils.newAtomicInteger( 0 ); |
35 |
private static Aggregation histogram = newAggregation(AggregationFunction.QUANTIZE); |
36 |
private static Aggregation average = newAggregation(AggregationFunction.AVERAGE); |
37 |
private static Aggregation max = newAggregation(AggregationFunction.MAXIMUM); |
38 |
private static Aggregation min = newAggregation(AggregationFunction.MINIMUM); |
39 |
private static Aggregation sum = newAggregation(AggregationFunction.SUM); |
40 |
private static Aggregation count = newAggregation(AggregationFunction.COUNT); |
42 |
@OnMethod (clazz = "java.util.concurrent.ThreadPoolExecutor" , method = "execute" , location = @Location (value = Kind.ENTRY)) |
43 |
public static void executeMonitor( @Self Object self) { |
44 |
Field poolSizeField = field( "java.util.concurrent.ThreadPoolExecutor" , "poolSize" ); |
45 |
Field largestPoolSizeField = field( "java.util.concurrent.ThreadPoolExecutor" , "largestPoolSize" ); |
46 |
Field workQueueField = field( "java.util.concurrent.ThreadPoolExecutor" , "workQueue" ); |
48 |
Field countField = field( "java.util.concurrent.ArrayBlockingQueue" , "count" ); |
49 |
int poolSize = (Integer) get(poolSizeField, self); |
50 |
int largestPoolSize = (Integer) get(largestPoolSizeField, self); |
51 |
int queueSize = (Integer) get(countField, get(workQueueField, self)); |
53 |
println(strcat(strcat(strcat(strcat(strcat( "poolSize : " , str(poolSize)), " largestPoolSize : " ), |
54 |
str(largestPoolSize)), " queueSize : " ), str(queueSize))); |
57 |
@OnMethod (clazz = "java.util.concurrent.ThreadPoolExecutor" , method = "reject" , location = @Location (value = Kind.ENTRY)) |
58 |
public static void rejectMonitor( @Self Object self) { |
59 |
String name = str(self); |
60 |
if (BTraceUtils.startsWith(name, "com.alibaba.pivot.common.asyncload.impl.pool.AsyncLoadThreadPool" )) { |
61 |
BTraceUtils.incrementAndGet(rejecctCount); |
66 |
public static void rejectPrintln() { |
67 |
int reject = BTraceUtils.getAndSet(rejecctCount, 0 ); |
68 |
println(strcat( "reject count in 1000 msec: " , str(reject))); |
69 |
AggregationKey key = newAggregationKey( "rejectCount" ); |
70 |
addToAggregation(histogram, key, reject); |
71 |
addToAggregation(average, key, reject); |
72 |
addToAggregation(max, key, reject); |
73 |
addToAggregation(min, key, reject); |
74 |
addToAggregation(sum, key, reject); |
75 |
addToAggregation(count, key, reject); |
79 |
public static void onEvent() { |
80 |
BTraceUtils.truncateAggregation(histogram, 10 ); |
81 |
println( "---------------------------------------------" ); |
82 |
printAggregation( "Count" , count); |
83 |
printAggregation( "Min" , min); |
84 |
printAggregation( "Max" , max); |
85 |
printAggregation( "Average" , average); |
86 |
printAggregation( "Sum" , sum); |
87 |
printAggregation( "Histogram" , histogram); |
88 |
println( "---------------------------------------------" ); |
运行结果:
1 |
poolSize : 1 , largestPoolSize = 10 , queueSize = 10 |
2 |
reject count in 1000 msec: 0 |
说明:
1. poolSize 代表为当前的线程数
2. largestPoolSize 代表为历史最大的线程数
3. queueSize 代表blockqueue的当前堆积的size
4. reject count 代表在1000ms内的被reject的数量。