- 【代码模板】可视化
xuanyu22
SOPopencv计算机视觉人工智能
PillowDocumentdataformat-(H,W,C),RGBdatadtype-np.uint8valuerange-(0,255)fromPILimportImage#Readimagesimg=Image.open("img.png").convert('RGB')#读取RGB图像img=Image.open("img.png").convert('L')#读取灰度图像(H,W)u
- 图像匹配---(Python)
阳光下的Smiles
Python图像处理
图像匹配---(Python)图像匹配分为以灰度为基础的匹配和以特征为基础的匹配:(1)灰度匹配是基于像素的匹配。灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。(2)特征匹配则是基于区域的匹配。基于特征的匹配所处理的图像一般包含的特征有颜色特征、纹理特征、形状特征、空间位置特征等1、差分矩阵求和差分矩阵=图像A矩阵数据-图像B矩阵
- 利用Python+OpenCV实现截图匹配图像,支持自适应缩放、灰度匹配、区域匹配、匹配多个结果
xu-jssy
Python自动化脚本pythonopencv开发语言图像处理自动化
可以直接通过pip获取,无需手动安装其他依赖pipinstallxug示例:importxugxug.find_image_on_screen(,,,)=========================================================================一、依赖安装pipinstallopencv-pythonpipinstallpyautogui二、获
- 图片中的上采样,下采样和通道融合(up-sample, down-sample, channel confusion)
迪三
#图像处理_PyTorch计算机视觉深度学习人工智能
前言以conv2d为例(即图片),Pytorch中输入的数据格式为tensor,格式为:[N,C,W,H,W]第一维N.代表图片个数,类似一个batch里面有N张图片第二维C.代表通道数,在模型中输入如果为彩色,常用RGB三色图,那么就是3维,即C=3。如果是黑白的,即灰度图,那么只有一个通道,即C=1第三维H.代表图片的高度,H的数量是图片像素的列数第四维W.代表图片的宽度,W的数量是图片像素的
- 逆radon变换matlab,Radon变换及其Matlab代码实现
少年商学院
逆radon变换matlab
Radon变换和Hough变换类似,最初是用于检测图像中的直线(例如笔直的街道边沿、房屋的边沿、笔直的电线等)。关于Hough变换,可以参考OpenCV中的代码和示例(其实除了HoughLines还有HoughCircles等等变种),此处不再赘述。关于Radon变换,可以参考wiki或者百科,或者网络上的其他资料介绍。这里做一个简单的总结。首先准备一张灰度化的图像,及黑白图像,然后检测图像的边缘
- MATLAB车牌定位和识别系统
清风明月来几时
图像算法处理matlab开发语言
有很多方法可以实现MATLAB车牌的定位和识别系统。以下是一种可能的实现步骤:车牌定位:使用图像处理技术(如边缘检测、区域生长或颜色分割)来检测图像中的车牌区域。使用形态学操作来排除不符合车牌形状的区域。对车牌区域进行裁剪或调整大小,以便后续的识别。车牌识别:将车牌图像转换为灰度图像。使用图像处理技术(如二值化、滤波或增强)来减少噪音并突出字符。使用字符分割算法将车牌中的字符分开。使用特征提取方法
- MATLAB车牌识别系统
清风明月来几时
图像算法处理matlab开发语言
MATLAB车牌识别系统是一个基于MATLAB开发的用于识别和提取车牌信息的系统。该系统使用图像处理和机器学习算法来实现车牌的定位和字符识别。以下是一个基本的MATLAB车牌识别系统的工作流程:图像预处理:首先,将输入的图像进行预处理,包括灰度化、高斯平滑、边缘检测等操作,以提高后续的车牌定位和字符识别的准确性。车牌定位:在预处理后的图像中,使用形态学运算和边缘检测算法来寻找车牌的位置。这可以通过
- uint8
姜太公钓鲸233
pythonnumpy
无符号8位整数(uint8)是一种数据类型,通常用于表示整数,但它不包括负数,只能表示非负的整数值。它的范围是从0到255,共有256个不同的可能取值。在计算机中,整数数据类型可以分为有符号和无符号。有符号整数可以表示正数、负数和零,而无符号整数只能表示非负的整数。在图像处理中,无符号8位整数通常用于表示灰度图像的像素值。一个像素的灰度值代表了图像中对应点的亮度强度,通常从0(黑色)到255(白色
- 【Python第三方库】OpenCV库实用指南
墨辰JC
Pythonopencvpython人工智能学习
文章目录前言安装OpenCV读取图像图像基本操作获取图像信息裁剪图像图像缩放图像转换为灰度图图像模糊处理边缘检测图像翻转图像保存视频相关操作方法讲解读取视频从摄像头读取视频前言OpenCV(OpenSourceComputerVisionLibrary)作为一个强大的计算机视觉库,提供了丰富的图像处理和计算机视觉功能,尤其在图像识别、对象检测、视频分析等领域有着广泛的应用。本文将带领读者使用Pyt
- 计算机视觉之旅-进阶-图像滤波处理
撸码猿
计算机视觉图像处理人工智能
1.基本概念1.1.数字图像图像处理的对象是数字图像,它是由像素点阵列表示的图像。需要了解像素、图像分辨率、灰度级、RBG等图像表示方法。用numpy数组表示,每个元素为像素值。例如RGB图像 importnumpyasnp img=np.array([[[255,0,0],[0,255,0]],[[0,0,255],[255,255,255]]]) 1.2.采样和量化数字图像是通过采样和量化得到
- python图像处理的图像几何变换
yava_free
图像处理python计算机视觉
一.图像几何变换图像几何变换不改变图像的像素值,在图像平面上进行像素变换。适当的几何变换可以最大程度地消除由于成像角度、透视关系乃至镜头自身原因所造成的几何失真所产生的负面影响。几何变换常常作为图像处理应用的预处理步骤,是图像归一化的核心工作之一[1]。一个几何变换需要两部分运算:空间变换:包括平移、缩放、旋转和正平行投影等,需要用它来表示输出图像与输入图像之间的像素映射关系。灰度插值算法:按照这
- [K8S] K8S资源控制器Controller Manager(4)
XJzz3
K8Skubernetes容器
文章目录1.常见的Pod控制器及含义2.ReplicationController控制器2.1部署ReplicaSet3.Deployment3.1部署Deployment3.2运行Deployment3.3镜像更新方式3.4Deployment扩容3.5滚动更新3.6金丝雀发布(灰度发布)3.7Deployment版本回退3.8Deployment更新策略4.DaemonSet4.1Daemon
- opencv 梯度幅值_基于OpenCV的图像梯度与边缘检测!
莫仝汉
opencv梯度幅值
严格的说,梯度计算需要求导数。但是图像梯度的计算,是通过计算像素值的差得到梯度的近似值。图像梯度表示的是图像变化的速度,反映了图像的边缘信息。边缘是像素值快速变化的地方。所以对于图像的边缘部分,其灰度值变化较大,梯度值也较大;对于图像中较平滑的部分,其灰度值变化较小,梯度值也较小。为了检测边缘,我们需要检测图像中的不连续性,可以使用图像梯度来检测不连续性。但是,图像梯度也会受到噪声的影响,因此建议
- opencv13:图像梯度
uncle_ll
#OpenCVopencvsobelscharrlaplacian
目标在本章中,将学习:查找图像梯度,边缘等学习以下函数:cv2.Sobel()cv2.Scharr()cv2.Laplacian()理论1)边缘:灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。2)边缘点:图像中具有坐标[x,y],且处在强度显著变化的位置上的点。3)边缘段:对应于边缘点坐标[x,y]及其方位,边缘的方位可能是梯度角OpenCV提供三种
- 灰度认知和黑白决策
龚小白大笨蛋
小时候看电视总是会问粑粑麻麻里边的猪脚哪个是好人、哪个是坏人,唱的歌里也是白脸的曹操、红脸的关公,好像这世上的人都可以忠奸立辨。慢慢长大后,出了社会才渐渐明白好人也有坏的一面,坏人也有好的一面,因此要认识到这个世界其实是有很多的灰色地带,但是我们做事情确实绝对的——非黑即白。非黑即白意味着给外界明确的信息,和你相处是需要遵守一定原则的,有时候或许会被人认为是迂腐、顽固,然而在实际的交往中反而能降低
- OpenCV-轮廓检测
红米煮粥
计算机视觉opencv图像处理
文章目录一、简介1.意义2.具体步骤二、代码实现三、总结一、简介1.意义在OpenCV中,轮廓检测是图像处理中一个非常重要的环节,它允许我们识别图像中的形状。这个过程通常涉及几个步骤:读取图像、转换为灰度图、应用阈值处理(或边缘检测)以获取二值图像、然后使用cv2.findContours()函数查找轮廓。2.具体步骤图像预处理:首先,对原始图像进行预处理,以便更容易地检测轮廓。这通常包括转换为灰
- 汽车智能驾驶算法汇总
芊言芊语
汽车算法
汽车智能驾驶算法是自动驾驶技术的核心,它们集成了多个学科的知识,包括计算机视觉、机器学习、控制理论、路径规划等。以下是对汽车智能驾驶算法的一个详细汇总,内容分为几个关键部分进行阐述。一、计算机视觉算法计算机视觉是智能驾驶算法中用于识别和理解环境的关键技术。它主要包括图像处理、特征提取和对象识别等步骤。图像处理:通过摄像头等设备获取车辆前方的图像,然后进行预处理,如灰度化、二值化、滤波等操作,以提高
- python图像对比度增强_Python 图像对比度增强的几种方法(小结)
weixin_39956451
python图像对比度增强
图像处理工具——灰度直方图灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。例子:矩阵图片来自网络,侵删!上面图片的灰度直方图python实现#!usr/bin/envpython#-*-coding:utf-8_*-"""@author:Suiyue@describe:灰度直方图,描述每个灰度级在图像矩阵中的像素个数或者占有率@time:2019/09/15"""
- fpga图像处理实战-边缘检测 (Roberts算子)
梦梦梦梦子~
OV5640+图像处理图像处理计算机视觉人工智能
Roberts算子Roberts算子是一种用于边缘检测的算子,主要用于图像处理中检测图像的边缘。它是最早的边缘检测算法之一,以其计算简单、速度快而著称。Roberts算子通过计算图像像素在对角方向的梯度来检测边缘,从而突出图像中灰度变化最剧烈的部分。原理Roberts算子通过对图像应用两个2x2的卷积核(也称为掩模或滤波器)来计算图像在水平和垂直方向上的梯度。假设原始图像的像素值为I(x,y),则
- Apache APISIX 介绍
D哈迪斯
服务器apache
ApacheAPISIX是一个动态、实时、高性能的云原生API网关,属于Apache软件基金会旗下的项目。以下是对ApacheAPISIX的详细介绍:一、基本概述定义:ApacheAPISIX是一个提供丰富流量管理功能的云原生API网关。功能:包括负载均衡、动态上游、灰度发布、服务熔断、身份认证、可观测性等。应用场景:既可以处理传统的南北向流量(客户端到服务器的流量),也可以处理服务间的东西向流量
- 8 自研rgbd相机基于rk3566之sensor图像解析与AWB算法原理
三十度角阳光的问候
awbraw图rk3566图像解析白平衡rgb-demasac
自研rgbd相机基于rk3566之sensor图像解析与AWB开发1、sensor-raw图解析介绍2、sensor-raw图解析程序详解常规raw10-to-raw16数据解析sc2310-raw10-to-raw16图像解析gc2053/gc2093raw图像解析3、sensor-awb及常用算法程序bayerbggrtorgb图像解析简单白平衡算法灰度世界法白平衡算法完美反射法白平衡算法三通
- 学习记录——语义分割和实例分割的标签结构
落叶击球
学习笔记学习人工智能
语义分割:一张样本,生成一张掩码图像标签。灰度图像,背景亮度为0,每个目标根据分类赋予不同亮度——1,2,3......实现像素级的类别区分,但无法区分个体。实例分割:原理:一张样本,生成一个多通道的Mat矩阵,也就是多张掩码图像叠在一起。每张掩码图负责存储一个类别的目标,亮度只有0和1,通过通道号区分每个类别。同时,每张掩码图内,每个目标拥有ID号(通过增加一个维度实现),负责区分一个类别中的每
- 智能8路灰度
低调包含不哈哈
开源分享c语言学习stm32
一传感器介绍自制8路灰度传感器,由嘉立创打板,不同于普通的红外循迹模块,这个8路灰度可以用来循迹白底黑线,也可以用来寻蓝底黑线等其他环境。并且灰度传感器,相对于红外传感器干扰小,探测距离高。且不通过电位器进行电压比较,而是通过MCU用ADC采样取得接收管电压,将此电压与之前按键保存的电压相比较(前面为大概介绍,具体使用方法在后面)。二原理介绍8路灰度,每一路由一个发光二极管和一个光敏二极管组成。灰
- C#调用OpenCvSharp实现图像的直方图均衡化
gc_2299
dotnet编程OpenCvSharp直方图均衡化
本文学习基于OpenCvSharp的直方图均衡化处理方式,并使用SkiaSharp绘制相关图形。直方图均衡化是一种图像处理方法,针对偏亮或偏暗的图像,通过调整图像的像素值来增强图像对比度,详细原理及介绍见参考文献1-4。 直方图均衡化第一步要将彩色图像转换为灰度图像,调用OpenCvSharp中的Cv2.CvtColor函数转换,主要代码及效果图如下所示:MatoriImage=Cv2.Im
- Halcon基于灰度值的模板匹配
看海听风心情棒
计算机视觉人工智能
Halcon基于灰度值的模板匹配基于灰度值的模板匹配是最经典的模板匹配算法,也是最早提出来的模板匹配算法。这种算法的根本思想是,计算模板图像与检测图像之间的像素灰度差值的绝对值总和(SAD方法)或者平方差总和(SSD方法)。其原理是:首先选择一块ROI(感兴趣区域)作为模板图像,生成基于灰度值的模板;然后将检测图像与模板图像进行粗匹配,在检测图像与模板图像中任选一点,采取隔点拽索的方式计算二者灰度
- 昨日如风
伊一娓娓
2019年1月16日昨日如常像风,吹了一湖镜面心。仿佛不想记起昨日的所有事情。图片发自App只有秋天的风值得踩碎只有和你喝过的酒值得干杯想见你因为我的眼睛饥饿它需要一次暴饮暴食很多人有才华,有涵养,一旦触发他的开关,他会真诚向你展示整个宇宙。灰度思考,黑白决策。世人觉得她淡薄,只因为她不屑世俗的标准。她对自我的要求,和世俗的期许并不一样。有的人,你只是暂时和他同行,和他轨道有交集而已。这让你有了你
- 【java程序学习】从零开始编写美颜相机程序——第一讲
ecplice123
数码相机java学习
首先来看最终效果图美颜相机主要由多种功能组成:基本窗体,菜单栏,拉杆,灰度,二值,放大一倍,缩小一倍,以及三原色滤镜和透明度调节组成。万丈高楼平地起,咱们先从基础款开始搞起1.首先创建一个包,然后创建一个类,以下,我以imagepan和drawlis为例之后咱们正式开始创建项目首先,为了方便我们可以将imagepan类继承到JFream中(这里默认咱们已经创建了main主函数)publicclas
- 图像处理 -- 图像清晰度测量方法
sz66cm
图像处理计算机视觉
图像清晰度测量方法拉普拉斯算子(LaplacianOperator)拉普拉斯算子是一种二阶导数算子,用于检测图像的边缘。清晰的图像通常具有更多且更明显的边缘。边缘检测(EdgeDetection)常用的边缘检测算法包括Sobel、Prewitt和Canny边缘检测器。通过计算边缘的数量和强度,可以间接判断图像的清晰度。方差(Variance)方差用于衡量图像灰度值的分布情况。图像中灰度值的方差越大
- 2-83 基于matlab的自适应正则化核的模糊均值聚类框架(ARKFCM)
'Matlab学习与应用
matlab工程应用算法matlab均值算法自适应正则化核模糊均值聚类框架脑磁共振图像的分割
基于matlab的自适应正则化核的模糊均值聚类框架(ARKFCM),用于脑磁共振图像的分割。该框架采用三种算法,分别平均滤波器、中值滤波器和设计的加权图像的灰度来代替局部平均灰度。利用邻域中灰度的异质性获取局部信息,并用高斯径向基核函数替换标准欧几里德距离。程序已调通,可直接运行。2-83脑磁共振图像的分割-小红书(xiaohongshu.com)
- 数据图像处理26
逸缘
人工智能计算机视觉算法图像处理python
六、图像分割6.3分水岭图像分割6.3.1分水岭算法的基本概念分水岭算法之所以得名,是因为其的分割原理与地理学中的分水岭现象非常相似。在地理学中,分水岭是分隔相邻水系的山岭或高地,雨水会分别流向两侧的水系。分水岭算法常用于图像的态学分割。它把图像比作一个地形图,其中每个像素的灰度值则代表该点的海拔高度。分水岭算法可以想象成是模拟水从局部最小值(低地)开始流动并汇聚成河流,最终在不同河流相遇处形成分
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo