POJ 3614 Pseudoprime numbers(快速幂)

Pseudoprime numbers

Time Limit: 1000MS


Memory Limit: 65536K

Total Submissions: 8035


Accepted: 3341

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes



题意:专业名词太多,没看懂。 p不是素数,且a^p对p取模等于a,输出yes,其他的输出no。


题解:判断p是否是素数那部分直接蛮力求就好,打表打不下。很简单啦。


代码如下:


#include<cstdio>
#include<cstring>
#define ll long long

bool is_prime(ll n)
{
	ll i;
	for(i=2;i*i<n;++i)
	{
		if(n%i==0)
			return false;
	}
	return true;
}

ll result(ll n,ll m)
{
	ll ans=1,cnt=m;
	while(cnt)
	{
		if(cnt&1)
			ans=(ans*n)%m;
		cnt>>=1;
		n=(n*n)%m;
	}
	return ans;
} 

int main()
{
	ll p,a;
	while(scanf("%lld%lld",&p,&a)&&p||a)
	{
		if(is_prime(p))
			printf("no\n");
		else if(a==result(a,p))
			printf("yes\n");
		else if(a!=result(a,p))
			printf("no\n");
	}
	return 0;
}





你可能感兴趣的:(POJ 3614 Pseudoprime numbers(快速幂))