poj3308Paratroopers(最小割)

题目请戳这里

题目大意:给一个n*m的矩阵,给一些点(ri,ci)表示该点在第ri行第ci列。现在要覆盖所有的点,已知覆盖第i行代价为Ri,覆盖第j列代价为Cj。总代价是累乘的,求最小总代价能覆盖所有的点。

题目分析:最小割。增加一个超级源点和超级汇点,源点到行连边,边权为覆盖行的代价,每列到汇点建边,边权为覆盖该列的代价。对于给定的点对,ri->cj连边,边权无穷大。求一个最小割即可。因为根据割的性质,会将图分成2部分,一部分含源点,一部分含汇点,那么这个割集的边只可能为s->ri、ri->cj、cj->t中的某些边,而ri->cj权是无穷大的,所以不会选这些边,因此割集必在s->ri和cj->t中,那么割集中的边就代表选中要覆盖的行和列,因为要总代价最小,所以求出最小割就是最小总代价。

因为总代价是累乘的,所以要化乘法为加法,取对数。

trick:输出浮点数的时候%.f,%.lf会WA。。。

详情请见代码:

#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 105;
const int M = 5500;
const double inf = 100000000.0;
const double eps = 1e-8;
int m,n,l,num;
struct node
{
    double c;
    int to,next,pre;
}arc[M];
int head[N],sta[N],que[N],cnt[N],dis[N],rpath[N];
void build(int s,int e,double cap)
{
    arc[num].to = e;
    arc[num].c = cap;
    arc[num].next = head[s];
    head[s] = num ++;
    arc[num - 1].pre = num;
    arc[num].pre = num - 1;
    arc[num].to = s;
    arc[num].c = 0.0;
    arc[num].next = head[e];
    head[e] = num ++;
}
void re_Bfs()
{
    int i,front,rear;
    for(i = 0;i <= n + m + 1;i ++)
    {
        dis[i] = n + m + 2;
        cnt[i] = 0;
    }
    front = rear = 0;
    dis[n + m + 1] = 0;
    cnt[0] = 1;
    que[rear ++] = n + m + 1;
    while(front != rear)
    {
        int u = que[front ++];
        for(i = head[u];i != -1;i = arc[i].next)
        {
            if(arc[arc[i].pre].c < eps || dis[arc[i].to] < n + m + 2)
                continue;
            dis[arc[i].to] = dis[u] + 1;
            cnt[dis[arc[i].to]] ++;
            que[rear ++] = arc[i].to;
        }
    }
}
void ISAP()
{
    re_Bfs();
    int i,u;
    double maxflow = 0.0;
    for(i = 0;i <= n + m + 1;i ++)
        sta[i] = head[i];
    u = 0;
    while(dis[0] < n + m + 2)
    {
        if(u == n + m + 1)
        {
            double curflow = inf;
            for(i = 0;i != m + n + 1;i = arc[sta[i]].to)
                curflow = min(curflow,arc[sta[i]].c);
            for(i = 0;i != m + n + 1;i = arc[sta[i]].to)
            {
                arc[sta[i]].c = arc[sta[i]].c - curflow;
                arc[arc[sta[i]].pre].c = arc[arc[sta[i]].pre].c + curflow;
            }
            maxflow = maxflow + curflow;
            u = 0;
        }
        for(i = sta[u];i != -1;i = arc[i].next)
            if(arc[i].c > eps && dis[arc[i].to] + 1 == dis[u])
                break;
        if(i != -1)
        {
            sta[u] = i;
            rpath[arc[i].to] = arc[i].pre;
            u = arc[i].to;
        }
        else
        {
            if((-- cnt[dis[u]]) == 0)
                break;
            sta[u] = head[u];
            int Min = m + n + 2;
            for(i = sta[u];i != -1;i = arc[i].next)
                if(arc[i].c > eps)
                    Min = min(Min,dis[arc[i].to]);
            dis[u] = Min + 1;
            cnt[dis[u]] ++;
            if(u != 0)
                u = arc[rpath[u]].to;
        }
    }
    printf("%.4lf\n",pow(10.0,maxflow));
}
int main()
{
    int t,i;
    int a,b;
    double x;
    scanf("%d",&t);
    while(t --)
    {
        memset(head,-1,sizeof(head));
        scanf("%d%d%d",&n,&m,&l);
        for(i = 1;i <= n;i ++)
        {
            scanf("%lf",&x);
            build(0,i,log10(x));
        }
        for(i = 1;i <= m;i ++)
        {
            scanf("%lf",&x);
            build(n + i,m + n + 1,log10(x));
        }
        while(l --)
        {
            scanf("%d%d",&a,&b);
            build(a,n + b,inf);
        }
        ISAP();
    }
    return 0;
}
//568K	16MS


你可能感兴趣的:(图论,网络流)